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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-2 ALGEBRAIC TOPOLOGY 
 

Algebraic Topology is an important branch of topology having several 

connections with many areas of modern mathematics. Its growth and 

influence, particularly since the early forties of the twentieth century, has 

been remarkably high. 

It is best suited for those who have already had an introductory course in 

topology as well as in algebra. Experience suggests that a comprehensive 

coverage of the topology of simplicial complexes, simplicial homology 

of polyhedra, fundamental groups, covering spaces and some of their 

classical applications like invariance of dimension of Euclidean spaces, 

Brouwer’s Fixed Point Theorem, etc. are the essential minimum which 

must find a place in a beginning course on algebraic topology. Having 

learnt these basic concepts and their powerful techniques, one can then 

go on in any direction of the subject at an advanced level depending on 

one’s interest and requirement. 

 

In block 2 we explain the topology of simplicial complexes, introduce 

thenotion of barycentric subdivision and then prove the simplicial 

approximation theorem. We introduce the first classical homology 

theory, viz., the simplicial homology of a simplicial complex and then 

proceed to define the simplicial homology of a compact polyhedron. We 

explain about applications of the homology spectral sequence and 

algebraic curves. 
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UNIT-8 GENERAL BORDISM 

THEORIES  
 

STRUCTURE 

8.0 Objective 

8.1 Introduction 

8.2 General Bordism theories 

8.3 Classifying spaces 

8.4 Construction of the Thom Spectra 

8.5 Generalized homology theories 

8.6 Let us sum up 

8.7 Key words 

8.8 Questions for review 

8.9 Suggestive readings and references 

8.10 Answers to check your progress 

8.0 OBJECTIVE 
 

In this unit we will learn and understand about general bordism theories, 

Classifying spaces, Construction of the Thom spectra, Generalized 

homology theories. 

8.1 INTRODUCTION 
 

In this chapter (in contrast to the rest of this book), the word “mani- 

fold” will mean a compact, smooth manifold with or without 

boundary and a submanifold V M will mean a compact submanifold 

whose boundary is contained in the boundary of M in such a way that 

V meets the boundary of M transversely. The normal bundle of a 
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submanifold i: V M is the quotient  bundle  i * TM /TV and we will 

use the notation  v V M  or  v i .If M  is a submanifold of Rn, or 

more generally if M  has a Riemann-ianmetric, then the normal  bundle

 v V M can be identified with the sub  bundle of TM |V consisting of 

all tangent vectors in TpM which are perpendicular to TpV , where

P V. A tubular neighborhood  of a submanifold i : V M  is a 

embedding  f : v i M  which M  which restricts to the identity on 

(the zero section) V . Informally, we say that the open set

is a tubular neighborhood of V. 

8.2 GENERAL BORDISM THEORIES 
 

Framed bordism is a special case of a general bordism theory, where one 

consider bordisms respecting some specific  stable structure on the 

normal bundle of a smooth manifold. We will give examples of stable 

structures now, and then ask you to supply a general definition in 

Exercise 1.  

Basically a property of vector bundles is stable if whenever a bundle   

has that property, then so does k  for all k. 

8.2.1. Framing. A stable framing on a bundle    is, as we have seen, a 

choice of homotopy class of bundle isomorphic 

:   k n k   

Subject to the equivalence relation generated by the requirement that 

1: .k n kId        

8.2.2. The empty structure. This refers to bundles with no extra structure. 

8.2.3. Orientation. This is weaker than requiring a framing. The most 

succient way to define an orientation of a n-plane bundle   of is to 

choose a homotopy class of trivialization of the highest exterior power of 

the bundle, 

  U f v i M 
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 : .n   
 

Equivalently, an orientation is a reduction of the structure group to 

 , ,GL n R  the group of n-by-n matrices with positive determinanat. A 

oriented manifold is a manifold with an orientation on its tangent bundle. 

 Since   a b V W  is canonically isomorphic to  a bV W  if V is a 

a-dimensional vector space and W is a b-dimensional vector space, it 

follows that  n   is canonically isomorphic to   n k k  for any 

 Thus an orientation on  induces one on  so an orientation 

is a well-defined stable property. 

8.2.4.Spin structure. Let    Spin n SO n  be the double cover where 

 Spin n  is connected for n > 1. A spin structure on an n-plane bundle   

over a space M is a reduction of the structure group to  Spin n . This is 

equivalent to giving a principle  Spin n -bundle P M  and an 

isomorphism  ( ) .  n

Spin nP R M  A spin manifold whose tangent 

bundle has a spin structure. Spin structures come up in differential 

geometry and index theory. 

 The stabilization map    1 SO n SO n  induces a map 

   1 . Spin n Spin n  Thus a principle  Spin n  bundle P M  

induces a principle  1 Spin n  bundle 
   1 ,  

Spin n
P Spin n M  and 

hence a spin structure on   gives a spin structure on .  A spin 

structure is a stable property. 

 A framing on a bundle gives a spin structure. A spin structure on a 

bundle gives an orientation. It turns out that a spin structure is equivalent 

to a framing on the 2-skeleton of M. 

8.2.5. Stable Complex structure: An complex structure on a bundle   is 

a bundle map : J    so that . J J Id  This forces the (real) 

dimension of   to be even. Equivalently complex structure is a reduction 

of the structure group to    , 2 , .GL k C GL k R  The tangent bundle of a 

0.k   , 
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complex manifold admits a complex structure. One calls a manifold with 

a complex structure on its tangent bundle an almost complex manifold 

and it may ot may not admit the structure of a complex manifold. (It can 

be shown that 
6S  is an almost complex manifold, but whether or not 

6S  

is a complex manifold is still an open question.) 

 One way to define a stable complex structure on a bundle   is as a 

section 

  ,  k kJ Hom    

Satisfying  in each fiber. Given such a J, one can extend it 

canonically to 

  2 2,k kJ J i Hom  


      
 

By identifying 2  with M C  and using multiplication by I to define 

  , .  i Hom M C M C  As usual, two such structures are identified 

if they are homotopic. Note that odd-dimensional manifolds cannot have 

almost complex structures but may have stable almost complex 

structures. 

If :   k   is a stable framing, up to equivalence we may assume 

that  is even. Then identifying   with 
/2M C  induces an stable 

complex structure on .k  Thus stably framed bundles have a stable 

complex structure. 

 Similarly, a complex structure determines an orientation, since a 

complex vector space has a canonical (real) orientation. To see this, 

notice that if  1...., re e  is a complex basis for a complex vector space, 

then  1 1, ie ,...,e ,r re ie  is a real basis whose orientation class is 

independent of the choice of the basis   1...., re e . 

The orthogonal group  O n  is a strong deformation retract of the general 

linear group  , ;GL n R this can be shown using the Gram-Schmidt 

2J Id 
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process. This leads to a one-to-one correspondence between 

isomorphism classes of vector bundles and isomorphism classes of 

vector bundles and isomorphism classes of nR  bundles with structure 

group  O n  over a paracompact base space. An nR bundle with a 

metric has structure group  O n . Conversely and nR bundle with 

structure group  O n over a connected base space admits a metric, 

uniquely defined up to scaling. Henceforth in this chapter all bundles will 

have metrics with orthogonal structure group. 

 The following exercise indicates how to define a structure on a stable 

bundle in general. 

Exercise 1:. Let   nG G be a sequence of topological groups with 

continuous homomorphisms  1 n n nG G and G O n  so that the 

diagram 

 

Commutes for each n, where the injection    1 O n O n  is defined 

by 

 

Use this to define a stable G-structure on a bundle . (Hint: either use 

classifying spaces or else consider the overlap functions for the stable 

bundle.) 

Define what a homomorphism G G  should be in such a way that a 

bundle with a stable G-structure becomes a bundle with a stable G   

structure. 

 There are many examples of G-structures. As a perhaps unusual 

example, one could take nG  to be    O n or SO n  with the discrete 
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topology. This spectrum arises in the study of flat bundles and algebraic 

K-theory. 

 For our previous examples, a framing corresponds to 1,nG  the trivial 

group for all n. The empty structure corresponds to  .nG O n  An 

orientation corresponds to    . nG Spin n SO n  An stable complex 

structure corresponds to     / 2 . nG U n O n  

 Concepts such as orientation and almost complex structure are more 

natural on the tangent bundle, while the Pontrjagin-Thom construction 

and hence bordism naturally deals with the stable normal bundle. The 

following exercise generalizes Theorem 8.13 and shows that in some 

cases one can translate back and forth. 

Exercise: 

1. Show that an orientation on the stable tangent bundle of a manifold 

determines one on the stable normal bundle and conversely. 

2. Show that a complex structure on the stable tangent bundle of a 

manifold determines one on the stable normal bundle and conversely. 

 (Hint/discussion: The real point is that the tangent bundle and normal 

bundle are (stably) Whitney sum inverses, so one may as well consider 

bundles and  over a finite-dimensional base space with a framing of 

.   A complex structure on   is classified a map to  k

nG C  and   

is equivalent to the pullback of the orthogonal complement of canonical 

bundle over the complex grassmannian, and hence V is equipped with a 

complex structure. Part 1 could be done using exterior powers or using 

the grassmannian of oriented n-planes in .kR ) 

Definition: Given a G-structure, define the n-th G-bordism group of a 

space X to be the G-bordism classes of n-dimensional closed manifolds 

mapping to X with stable G-structures on the normal bundle of an 

embedding of the manifold in a sphere. Denote this abelian group (with 

disjoint union as the group operation)by 

 .G

n X
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Thus an element of  G

n X  is represented by an embedded closed 

submanifold ,n kM S  a continuous map : ,f M X  and a stable G-

structure   on the normal bundle   Bordism is the equivalence relation 

generated by replacing k by k+1, and by 

   0 0 0 1 1 1, , , ,k kM S f M S f    

Provided that there exists a compact manifold  
kW S I   with 

boundary  

     0 10 1M M    (which we identify with 0 1M IIM ), a map 

F : W X  and a stable G-structure  on   kv W S I  which 

restricts to   0 1 0 1 0 1M IIM ,f II f , II .  

We previously used the notation fr for framed bordism, i.e   fr 1  

where    n1 G G ,  the trivial group for all n,  

We next want to associate spectra to bordism theories based on a stable 

structure. We  have already seen how this works for framed bordism: 

       


     fr S

n n nX X lim X S  

i.e. framed bordism corresponds to the sphere spectrum   n

nS S ,k . 

 What do the other bordism theories  correspond to? Does there exist a 

spectrum K for each structure G so that 

      


    G

n n nX H X,K lim X K ?  

The answer is yes; the spectra for bordism theories are called Thom 

spectra MG. In  particular, one can define G-cobordism by taking 

   


   
n

nH X;MG lim S X ;MG 0.
 

We are using the algebraic topology terminology where cobordism is the 

theory dual (in the Spanier-Whitehead sense) to bordism. It is traditional 
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for geometric topologists to call bordant manifolds “cobordant,” but we 

will avoid this terminology in this book. 

Thus we know that M1 is the sphere spectrum. We will give a 

construction for MG for any structure G. 

8.3 CLASSIFYING SPACES 
 

The construction of Thom spectral  is accomplished most easily via the 

theory of classifying spaces. The basic result about classifying spaces is 

the following. The construction and the proof of this theorem is one of 

the student projects for Chapter 4. 

Theorem 8.1. Given any topological group G, there exists a principal G- 

bundle EG BG  where EG is a contractible space. The construction is  

Functorial, so that any continuous group homomorphism  :G H

induces a bundle map 

 

Compatible with the actions, so that if  x EG,g G,  

          E x.g E x . g  

The space BG is called a classifying space for G. 

The function 

      aps: M B,BG Pr incipalG bundles overB  

 Defined by pulling back       *so f f EG  induces a bijection from 

the homotopy set  B,BG  to the set of isomorphism classes of principal 

G-bundles over B, when B is a CW-complex (or more generally a 

paracompact space). 
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The long exact sequence for the fibration  G EG BG   shows that 

  n n 1BG G.  In fact, BG  is (weakly) homotopy equivalent to G, as 

one can see by taking the extended fiber sequence….

    EG Bg G EG BG, computing with homotopy 

groups, and observing that EG and  EG  are contractible. Thus the 

space BG is a delooping of G.  

The following lemma is extremely useful. 

Lemma 8.1: Let P: E B  be a principal G-bundle, and let f :B BG  

be the classifying map. Then the homotopy fiber of f is weakly 

homotopy equivalent to E. 

Proof. Turn f :B BG  into a fibration 'q : B BG  using Theorem 

6.18 and let 'F  denote the homotopy fiber of 'q : B BG . Thus there 

is a commutative diagram. 

 

With h a homotopy equivalence. The fact that f is the classifying map for 

p : E B implies that there is a commutative diagram 

 

And since EG is contaractible, f p q h p : E BG  is 

nullhomotopic. By the homotopy lifiting property for the fibration 

'q : B BG  it follows that  'h p : E B  is homotopic into the fiber 

' 'F of q : B BG  and so one obtains a homotopy commutative diagram 

of spaces  
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The left edge is a fibration, h is a homotopy equivalence, and by the five 

lemma the map       '

n nE F  is an isomorphism for all n. 

In Lemma 8.23 one can usually conclude that the homotopy fiber of 

f :B BG  is in fact a homotopy equivalence. This would follow if we 

know that 'B  is homotopy equivalent to a CW-complex. This follows for 

most G by a theorem of Milnor [24]. 

Exercise  : Show that given a principal G-bundle E B  there is 

fibration 

 

Where GEG E denotes the Borel construction.  

8.4 CONSTRUCTION OF THE THOM 

SPECTRA  
 

We proceed with the construction of the Thom spectra. We begin with a 

few preliminary notions. 

Definition 8.2 If E B  is any vector  bundle over a CW-complex B 

with metric then the Thom space of E B is the quotient    D E /S E

, where  D E  denotes the unit disk bundle of E and    S E D E  

denotes the unit sphere bundle of E. 
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Notice that the zero section B Edefines an embedding of B into the 

Thom space. 

The first part of the following exercise is virtually a tautology, but it is 

key to understanding why the spectra for bordism are given by Thom 

spaces. 

Exercise. 

1.   If E B  is a smooth vector bundle over a smooth compact 

manifold B, then the  thom space of E is a smooth manifold away from 

one point and the 0-section  embedding of B into the Thom spce is a 

smooth embedding with normal bundle  isomorphic to the bundle 

E B  

2. The  Thom space of a vector bundle over a compact base is 

homeomorphic to the one-point compactification of the total space. 

Now let a G-structure be given. Recall that this means we have a 

sequence of continuous groups nG  and homomorphisms  nG 0 n  

and n n 1G G  such that the diagram 

 

Commutes, 

We will construct the Thom spectrum for this structure form the Thom 

spaces of vector bundles associated to the principal bundles 

 n n n.G EG BG  

Composing the bomomorphism  nG 0 n  with the standard action of 

 0 n  on nR  defines an action of n

nG onR .  Use this action to form the 

universal nR vector bundle over nBG
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Let us denote this vector bundle by n n.V BG Notice that by our 

assumption that n.G maps to  o n , this vector bundle has a metric, and 

so the unit sphere and disk bundles are defined. 

Functoriality gives vector bundle maps (which are linear injection on 

fibers). 

 

Let nMG  denote the Thom space of n n.V BG Thus nMG  is obtained 

by collapsing the unit sphere bundle of nV  in the unit disk bundle to a 

point. 

Lemma 8.25: 

1. If E B  is a vector bundle, then the Thom space of E   is the 

reduced suspension of the Thom space of E. 

2. A vector bundle map 

 

Which is an isomorphism preserving the metric on each fiber induces a 

map of Thom spaces. 
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Proof: To see why the first statement is true, note that an  O n -

equivariant homeomorphism n 1 nD D I   determines an 

homeomorphism of  D E   with  D E I which induces a 

homeomorphism    D E /S E    with  

         D E I / S E I d E 0,1 ).     

But it is easy to see that the this identification space is the same as the 

(reduced) suspension of    D E /S E  

The second statement is clear. 

The following theorem states that the collection  nMG MG  forms a 

spectrum. And the and that the corresponding homology theory is the 

bordism theory defined by the corresponding structure. 

Theorem 8.26 : The fiberwise injection n n 1V V  extends to a (metric 

preserving) bundle map n n 1V V    which is an isomorphism on each 

fiber, and hence defines a map 

n n n 1K : SMG MG   

Thus n nMG ,k MG  is a spectrum, called the Thom spectrum. 

Moreover, the bordism groups  G

n X are isomorphic to  nH X;MG .  

Proof: Since the diagram 

 

 Commutes, where    0 n 0 n 1  the homomorphism is 
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It follows by the construction of nV  that the pullback of n 1V   by the map 

n n n 1: BG BG    splits canonically into a direct sum  *

n n 1 nV V .     

Thus the diagram 

 

Extends to a diagram 

 

Which is an isomorphism on each fiber; this isomorphism preserves the 

metrics since the actions are orthogonal. 

By Lemma 8.25, the above bundle map defines defines a map 

n n n 1k : SMG MG   

Establishing the first part of the theorem. 

We now outline how to establish the isomorphism 

   G

n n
l

X lim X MG . 


     

This is a slightly more complicated version of the Pontrjagin-Thom  

construction  we described before, using the basic property of classifying 

spaces.  

We will first define the collapse map 

   G

n n
l

c : X lim X MG . 


     

Suppose    G

nW,f, X .  So W is an n-manifold with G-Structure on 

its stable normal bundle, and f : W X is a continuous map. Embed W 
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in nS   form some large so that the normal bundle  v W has a G -

structure. 

Let F W  

 

Let F Wbe the principal  O -bundle of orho normal frames in 

 v W .The statement that  v W . has a G structure is equivalent to 

saying that there is a principal  G bundleP W  and a bundle map 

Which is equivalent with respect to the homomorphism 

 G O  

Let 1c : W BG  classify the principal bundle P W. then by 

definition  v W  is isomorphic to the pullback  *

1c V . 

Let U be a tubular neighborhood of W in 
nS  and 

  nD U S  

Correspond to the disk bundle. Define a map  

 nh : S MG  

By taking everything outside of D to the base point, and on D, take the 

composite  

      D D v W D V MG  

The product 

  nf h : S X MG  

Composes with the collapse 

  X MG X MG  

To give a map 
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    n

.f h : S X MG  

We have thus defined the collapse map 

      


    G

n n nc : X lim X MG H X;MG  

To motivate the definition of the inverse of c, we will make a few 

comments on the above construction. The figure below illustrates that the 

composite of the zero section  z : BG D V  and the quotient map 

 D V MG  is a embedding. 

 

We thus will coincide BG  to be a subset of MG . Then in the above 

construction of the collapse map c,    1W X BG . 

Next we use transversality to define the inverse of  this the collapse map 

c. Represent  

  n
ˆ H X;MG by 



  n

.: S X MG  

Observe that the composite 

     X BG X MG X MG  

Is an embedding, since: 

1.  BG  misses the base point of MG , and  

2. The base point of X misses X . 

(The following figure gives an analogue by illustrating the embedding of 

X B in  X M if B is a point , M is a 2D bundle over B, and X is a 

interval.) 
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Furthermore      X BG X MG  

Has a neighborhood which is isomorphic to the pullback *

2V  where 

  2 : X BG BG  is the projection on the second factor. 

Transversality, adapted to this setting, says that 

  n: S X MG  is 

a smooth manifold, and whose tubular neighborhood, i.e. the normal 

bundle of W, has a G-structure. The composite of   : W X BG  and 

 1Pr : X BG X  give the desired element  

    G

nW X X .  

We sort of rushed through the construction of the inverse map to c, so we 

will backtrack and discuss some details. For every point in ,BG  there 

is a neighborhood U BG  over which the bundle V BG  is trivial 

and so there is a map 

   1 X U D /S  

Defined by composing   with projection on the fiber. Transversality 

then applies to this map between manifolds and one can patch together to 

get   using partitions of unity. Furthermore, transversality gives a 

diagram of bundle maps, isomorphisms in each fiber, 
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So that the normal bundle of W inherits a G-structure. 

Next note that replacing by 1 leads to the same bordism element. 

Stabilizing the normal bundle 

             n n n 1v W S v W S v W S  

Corresponds to including 
   n n 1W S S .  

Since the composite  

  

     
k IdSfn

1SS S X MG X MG  

Replaces the tubular neighborhood of 

     X BG ,i.eX V by X V , the construction gives a well-

defined stable G-structure on the stable normal bundle of W. 

The full proof that the indicated map    G

n nH X : MG X  is well-

defined and is the inverse of c is a careful but routine check of details 

involving bordisms, homotopies, and stabilization. 

Taking X to be a point, we see that the groups (called the coefficients) 

   G G

n n pt  are isomorphic to the homotopy groups  


nlim MG ,

since   pt M M.  

As an example of how these coefficients can be understood 

geometrically, consider oriented bordism, corresponding to 

 nG SO n . the coefficients   SO

n nequal MSO for  large 

enough. Some basic computations are the following. 
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1. An oriented closed 0-manifold is just a signed finite number of points. 

This bounds a 1-manifold if and only if the sum of the signs is zero. 

Hence  SO

n Z . Also,   MSO Z for 2.  

2. Every oriented closed 1-manifold bounds an oriented 2-manifold, 

since  1 2S D .Therefore  SO

1 0 . 

3. Every oriented 2-manifold bounds an oriented 3-manifold since any 

oriented 2-manifold 2-manifold embeds in 3R with one of the two 

complementary components compact. Thus  SO

2 0 . 

4. A theorem of Rohlin states that every oriented 3-manifold bounds a 4-

manifold. Thus  SO

3 0 . 

5. An oriented 4-manifold has a signature in Z, i.e. the signature of its 

intersection form. A good exercise using Poincare duality (see the 

projects for Chapter 3 ) shows that this is an oriented bordism invariant, 

and hence defines a  homomorphism  SO

4 Z . This turns out to be an 

isomorphism. More generally the signature defines a out to be an 

isomorphism. More generally the signature defines a map  SO

4k Z  for 

k. This is a surjection since the signature of 
2kCP  is 1. 

6. It is a fact that away from multiples of 4, the oriented bordism groups 

are torsion, i.e.    SO

n Q 0if n 4k . 

7. For all n, SO

n is finitely generated, in fact, a finite direct, sum of Z’s 

and Z/2’s. 

Statements 5,6, and 7 can be proven by computing  n MSO . How 

does one do this? A starting point is the Thom isomorphism theorem, 

which says that for all k,  

   



 

 
 

nnH BSO H MSO  

(Where 


H  denotes reduced cohomology). The cohomology of  BSO n  

can be studied in several ways, an so one can obtain information about 



Notes 

25 

the cohomology of MSO  by this with the Hurewicz theorem and other 

methods leads ultimately to a complete computation of oriented bordism 

(due to C.T.C. Wall), and this technique was generalized by Adams to a 

machine called the Adams spectral sequence. We will return to the Thom 

isomorphism theorem in Chapter 10. 

One the coefficients are understood, one can use the fact bordism is a 

homology theory to compute  SO

n X . For now we just remark that 

there is a map     SO

n nX H X  defined by taking f :M X  to the 

image of the fundamental class  f * M .Thus for example, the identity 

map on a closed, oriented manifold nM  is non-zero in  SO

n M . 

We can also make an elementary remark about unoriented bordism, 

which corresponds to  nG O n .Notice first that for any  O

n X , 

 2 0. Indeed, if nf : V X  represents  , take  F : V I X to be 

          F x,t f x then V I,F 2 V,f . Thus  O

n X consists only 

of elements of order 2. The full computation of unoriented bordism is 

due to Thom. We will discuss this more in Section 10.10 

Exercise: Show that      O O O

0 1 2Z/2, 0and Z/2. 

(Hint:  For O

2  use the classification theorem for closed surfaces, then 

show that if a surface F is a boundary of a 3-manifold, then dim 

 1H F : Z/2 is even.) 

There are several conversations regarding notation for bordism groups; 

each has its advantages. Given a structure defined by a sequence 

 nG : G , one can use the notation 

      G

* * *X ,H X;MG orMG X  

There is a generalization of a G-structure called a B-structure. It is given 

by a sequence of commutative diagrams 
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Where the vertical maps are fib rations. A G-structure in the old sense 

gives a   nBG BG -structure. A B-structure has a Thom spectrum 

TB=   nT , wheren  here denotes the vector bundle pulled back from 

the canonical bundle over n.BO There is a notion of a stable B-structure 

on a normal bundle of an embedded M, which implies that there is a map 

from the (stablized) normal bundle to k.There is a Pontrjagin-Thom 

isomorphism 

    B

n nX H X;TB . 

8.5 GENERALIZED HOMOLOGY 

THEORIES  
 

We have several factors from (based) spaces to graded abelian groups: 

Stable homotopy  S

n X ,bordism  G

n X ,or, more generally, 

homology of a space with coefficients in a spectrum  nH X : K . These 

are examples of generalized homology theories. Generalized homology 

theories come in two (equivalent) flavors, reduced and unreduced. 

Unreduced theories apply to unbased spaces and pairs. Reduced theories 

are functors on based spaces. The equivalence between the two points of 

view is obtained by passing from  X,A toX/A  and from Xto X .  

There are three high points to look out for in our discussion of homology 

theories. 

* The axioms of a (co) homology theory are designed for computations. 

One fist computes the coefficients of the theory. 
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Check Your Progress 

1. Prove: Given any topological group G, there exists a principal G- 

bundle EG BG  where EG is a contractible space. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let P: E B  be a principal G-bundle, and let f :B BG  

be the classifying map. Then the homotopy fiber of f is weakly 

homotopy equivalent to E. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove:  If E B  is a vector bundle, then the Thom space of E   is 

the reduced suspension of the Thom space of E. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

8.6 LET US SUM UP 
 

1. Given a G-structure, define the n-th G-bordism group of a space X to 

be the G-bordism classes of n-dimensional closed manifolds mapping to 

X with stable G-structures on the normal bundle of an embedding of the 

manifold in a sphere. Denote this abelian group (with disjoint union as 

the group operation)by
 .G

n X
 

2. E B  be a principal G-bundle, and let f :B BG  be the 

classifying map. Then the homotopy fiber of f is weakly homotopy 

equivalent to E. 

3. If E B  is any vector  bundle over a CW-complex B with metric 

then the Thom space of E B is the quotient    D E /S E , where 

 D E  denotes the unit disk bundle of E and    S E D E  denotes the 

unit sphere bundle of E. 
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8.8 KEY WORDS        
 

Homotopy 

Isomorphism 

Homomorphism 

General Bordism 

Homology 

8.9 QUESTIONS FOR REVIEW 
 

1. Explain about general bordism theories 

2. Explain about generalized homology theories 
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8.10 ANSWER TO CHECK YOUR 

PROGRESS 
 

1. See section 8.3 

2. See section 8.3 

3. See section 8.4 
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UNIT- 9 SPECTRAL SEQUENCES  
 

STRUCTURE 

9.0 Objective 

9.1 Introduction 

9.2 Definition of a spectral sequence 

9.3 The Leray-Serre-Atiyah-Hirzebruch spectral sequence 

9.4The edge homomorphisms and the transgressions 

9.5 Let us sum up 

9.6 Key words 

9.7 Questions for Review 

9.8 Suggested readings and references 

9.9 Answers to check your progress questions 

 

9.0 OBJECTIVE 
 

In this unit we will learn and understand about definition of Spectral 

sequence, The Leray-Serre-Atiyah-Hirzebruch spectral sequence and The 

edge homomorphism’s and the transgression. 

9.1 INTRODUCTION 

 

Spectral sequences are powerful computational tools in topology. They 

also can give quick proofs of important theoretical results such as the 

Hurewicz theorem and the Freudential suspension theorem. Computing 

with spectral sequences is somewhat like computing integrals in 

calculus; it is helpful to have ingenuity and a supply of tricks, and even 

so, you may not arrive at the final solution to your problem. There are 

many spectral sequences which give different kinds of information. We 

will focus on one important spectral sequence, the Leray-Serre-Atiyah-

Hirzebruch spectral sequence which takes as input a fibration over a CW-

complex and a generalized homology or cohomology theory. This 

spectral sequence exhibits a complicated relationship between the 
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generalized (co)homology of the total space and fiber and the ordinary 

(co)homology of the base. Many other spectral sequences can be derived 

from this one by judicious choice of fibration and generalized 

(co)homology theory.  

Carefully setting up and proving the basic result requires very careful 

bookkeeping; the emphasis in these notes will be on applications and 

how to calculate. 

9.2 DEFINITION OF A SPECTRAL 

SEQUENCE 

 

Definition 9.1. A spectral sequence is a homological object of the 

following type: 

 One is given a sequence of chain complexes 

 ,r rE d for r = 1, 2, . . . 

    and isomorphisms: 

 1 ker :
, .

Im :

r r r
r r r

r r r

d E E
E H E d

d E E

 
 


 

The isomorphisms are fixed as part of the structure of the spectral 

sequence so henceforth we will fudge the distinction between “ ” and “

” in the above context. 

In this definition the term “chain complex” just means an abelian group 

(or R-module) with an endomorphism whose square is zero. In many 

important contexts, the spectral sequence has more structure, namely the 

chain complexes rE  are graded or even bigraded, that is, rE

decomposes as a direct sum of terms ,

r

p qE  for  , .p q Z Z   moreover 

the differentials 
rd have a well-defined bidegree. For example, in a 

homology spectral sequence, usually 
rd  has bidegree  , 1r r  . In other 

words  , , 1.
r r r

p q p r q rd E E     

A student first exposed to this plethora of notation may be intimidated; 

the important fact to keep in mind is that a bigrading decomposes a big 

object  rE  into bite-sized pieces  , .r

p qE  Information about the ,

r

p qE  
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for some pairs  ,p q  gives information about 
1

,

r

p qE 
 for (probably fewer) 

pairs  ,p q . But with luck one can derive valuable information. For 

example, from what has been said so far you should easily be able to see 

that if  , 0r

p qE   for some fixed pair  ,p q , then , 0r k

p qE   for all 0k 

. This simple observation can sometimes be used to derive highly non-

trivial information. When computing with spectral sequences it is very 

useful to draw diagrams like the following. 

 

In this picture the short arrow depicts the differential 
2 2 2

3,0 1,1:d E E  

and the long arrow corresponds to the differential 
3 3 3

3,0 0,2:d E E   

One usually computes with a spectral sequence in the following way. A 

theorem will state that there exists a spectral sequence so that:  

1. the modules 2E  (or 1E ) can be identified with something known, and 

2. the limit 

lim r

r
E E


  

is related to something one wishes to compute. 

It can also work the opposite way, E can be related to something 

known and 2E can be related to something we wish to compute. In either 

case, this gives a complicated relationship between two things. The 

relationship usually involves exact sequences. In favorable circumstances 

information can be derived by carefully analysing this relationship. 

As an example to see how this may be used, the Leray–Serre spectral 
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sequence of a fibration implies that if F E B   is a fibration with B 

simply connected, then there is a spectral sequence with  

   2

, ; ;p q p qE H B Q H F Q   

And with 

  ,; .N P p n pH E Q E

   

This establishes a relationship between the homology of the base, total 

space, and fiber of a fibration. Of course, the hard work when computing 

with this spectral sequence is in getting from 2E  to E . But partial 

computations and results are often accessible. For example, we will show 

later (and the reader may wish to show as an exercise now) that if 

 ;p pH B Q and  ;q qH F Q  are finite-dimensional, then so is 

 ;n nH E Q and  

     . .x B x F x E  

Another example: if    ; ; 0p n pH B Q H F Q   for all p, then 

 ; 0nH E Q  . This generalizes a similar fact which can be proven for 

the trivial fibration 

B F B    using the Kunneth theorem. 

The next few definitions will provide us with a language to describe the 

way that the parts of the spectral sequence fit together. 

Definition 9.2. A filtration of an R-module A is an increasing union  

1 0 10 ...... ...... ........ .pF F F F A         

of submodules. A filtration is convergent if the union of the 'pF s  is A 

and their intersection is 0. 

If A itself is graded, then the filtration is assumed to preserve the grading 

i.e. 1 .p n p nF A F A    If A is graded, then we bigrade the filtration 

by setting 

, .p q p p qF F A    

We will mostly deal with filtrations that are bounded below, i.e. 0sF   

for some s, or bounded above, i.e. tF A  for some t, or bounded, i.e. 



Notes 

34 

bounded above and bounded below. In this book, we will always have 

1 0F  . 

Definition 9.3. Given a filtration  nF F  of an R-module A the 

associated graded module is the graded R-module denoted by Gr(A, F) 

and defined by  

 
1

, .
p

p
p

F
Gr A F

F 

  

We will usually just write Gr(A) when the filtration is clear from context. 

In general, one is interested in the algebraic structure of A rather than 

Gr(A). Notice that Gr(A) contains some (but not necessarily all) 

information about A. For example, for a convergent filtration: 

1. If Gr(A) = 0, then A = 0. 

2.  If R is a field and A is a finite dimensional vector space, then 

each iF  is a subspace and Gr(A) and A have the same dimension. Thus in 

this case Gr(A) determines A up to isomorphism. This holds for more 

general R if each Gr(A)n is free and the filtration is bounded above. 

3.  If R = Z, then given a prime b, information about the b-primary 

part of Gr(A) gives information about the b-primary part of A; e.g. if 

Gr(A)p has no b-torsion for all p then A has no b-torsion for all p. 

However, the b-primary part of Gr(A) does not determine the b-primary 

part of A; e.g. if 0 1Gr(A)  = Z, Gr(A)  = Z/2,  and  Gr A 0
n
  for 

0,1,n   it is impossible to determine whether ZA   or 

Z /2.A Z   

In short, knowing the quotients   1/p pp
Gr A F F   determines A up to 

“extension questions,” at least when the filtration is bounded. 

Definition 9.4. A bigraded spectral sequence  , ,r r

p qE d is called a 

homology 

spectral sequence if the differential 
rd  has bidgree  , 1r r  .  

Definition 9.5. Given a bigraded homology spectral sequence  , ,r r

p qE d , 

and a graded R-module *A , we say the spectral sequence converges to 

*A and write 
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2

,p q p qE A   

if: 

1.  for each p, q, there exists an 0r  so that ,

r

p qd  is zero for each 

0r r (by Exercise 145 below this implies ,

r

p qE  surjects to 
1

,

r

p qE 
 for 

0r  ) and, 

2.  there is a convergent filtration of *A , so that for each n, the limit 

, ,lim r

p n p p n p
r

E E

 


  is isomorphic to the associated graded module 

 * .
p

Gr A  

In many favorable situations (e.g. first-quadrant spectral sequences 

where 
2

, 0p qE   if p < 0 or q < 0) the convergence is stronger, namely 

for each pair (p, q) there exists an 0r  so that , ,

r

p q p qE E  for all 0r r . 

An even stronger notion of convergence is the following. Suppose that 

there exists an 0r  so that for each (p, q) and all 0 , ,, .r

p q p qr r E E   When 

this happens we say the spectral sequence collapses at 0rE . 

Exercise. Fix , .p q Z Z   

1.  Show that if there exists  0 ,r p q so that , 0r

p qd   for all 

 0 , ,r r p q then there exists a surjection 
1

, ,

r r

p q p qE E   for all 

 0 ,r r p q . 

2.  Show that if 
2

, 0p qE   whenever p < 0 then there exists a number 

 0 0 ,r r p q  as above. 

Theorems on spectral sequences usually take the form: “There exists a 

Spectral sequence with 
2

,p qE some known object converging to 
*
A .” This 

is an abbreviated way to say that the E -terms are on the one hand the 

limits of the rE -terms, and on the other the graded pieces in the 

associated graded  *
Gr A  to 

*
A . 

9.3 THE LERAY-SERRE-ATIYAH-

HIRZEBRUCH SPECTRAL SEQUENCE 
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Serre, based on earlier work of Leray, constructed a spectral sequence 

converging to  *
H E , given a fibration 

.fF E B   

Atiyah and Hirzebruch, based on earlier work of G. Whitehead, 

constructed a spectral sequence converging to  *
G B  where *

G  is an 

additive generalized homology theory and B is a CW-complex. The 

spectral sequence we present here is a combination of these spectral 

sequences and converges to  *
G E when *

G  is an additive homology 

theory. The spectral sequence is carefully constructed .and we refer you 

there for a proof. 

We may assume B is path connected by restricting to path components, 

but we do not wish to assume B is simply connected. In order to deal 

with this case we will have to use local coefficients derived from the 

fibration. Theorem 6.12 shows that the homotopy lifting property gives 

rise to a homomorphism 1B {Homotopy classes of homotopy 

equivalencesF F }. 

Applying the (homotopy) functor nG one obtains a representation 

 1 nB Aut G F   

for each integer n. Thus for each  , nn G F  has the structure of a Z

 1B module or, equivalently, one has a system of local coefficients 

over B with fiber  nG F . (Of course, if 1 1B   than this is a trivial 

local coefficient system.) 

Taking ordinary) homology with local coefficients, we can associate the 

group  ;p qH B G F  to each pair of integers p, q. Notice that 

 ;p qH B G F is zero if p < 0. 

Theorem 9.6. Let 
fF E B   be a fibration, with B a path 

connected CW-complex. Let *
G be an additive homology theory. Then 

there exists a spectral sequence 

   2

,; .p q p q p qH B G F E G E   
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Exercise. If *
G  is an additive, isotropic homology theory, then the 

hypothesis that B is a CW-complex can be omitted. (Hint: for any space 

B there is a weak homotopy equivalence from a CW-complex to B.) 

As a service to the reader, we will explicitly unravel the statement of the 

above theorem. There exists 

1.  A (bounded below) filtration 

 1, 1 0, 1, 1 ,0 ..... .....n n n p n p nF F F F G E           

of   ,n p p n pG E F    for each integer n. 

2.  A bigraded spectral sequence  ,* *
,r rE d  such that the differential 

rd  has bidegree  , 1r r   (i.e.  , , 1

r r r

p q p r q rd E E    ), and so 

, , 11

,

, 1 ,

ker :
.

Im :

r r r

p q p r q rr

p q r r r

p r q r p q

d E E
E

d E E

  

  





 

3.  Isomorphisms  2

, ; .p q p qE H B G F  

This spectral sequence converges to  *
G E . That is, for each fixed p, q, 

there exists an 0r  so that 

, , 1:r r r

p q p r q rd E E     

is zero for all 0r r  and so 

 1

, , , 1/r r r r

p q p r p r q rE E d E

    

For all 0r r . 

Define , ,lim .r

p q p q
r

E E


  There is an isomorphism 

, 1, 1 ,/ ,p q p q p qF F E

    

i.e. 

  ,n p n pp
Gr G E E

  

with respect to the filtration of  nG E . 

In this spectral sequence, some filtrations of the groups  nG E are 

given, with the associated graded groups made up of the pieces , .p n pE

  

So, for example, if   0nG E  , then , 0p n pE

   for each p Z. 

The filtration is given by 
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    1

, Im p

p n p n nF G f B G E

    

where :f E B  is the fibration and pB  denotes the p-skeleton of B. 

As a first non-trivial example of computing with spectral sequences we 

consider the problem of computing the homology of the loop space of a 

sphere. Given 1k  , let 
0

k

xP P S  be the space of paths in 
kS  which 

start at 0

kx S . As we saw in Chapter 6 evaluation at the endpoint 

defines a fibration 
kP S  with fiber the loop space 

kS . Moreover 

the path space P is contractible. The spectral sequence for this fibration 

(using homology with integer Coefficients for *
G ) has

  2

, ;k k

p q p qE H S H S  . The coefficients are untwisted since

 1 0kS  . Therefore 

(9.1)   
 2

,

0

0 .

k

q

p q

H S if p or p k
E

otherwise

   
 


 

In particular this is a first-quadrant spectral sequence. 

Since   0nH P   for all 0n  , the filtration of  nH P  is trivial for 

0n   and so , 0p qE   if 0p q  . Since this is a first-quadrant 

spectral sequence, , 0p qE   for all    , 0,0p q  , and, furthermore, 

given any    , 0,0p q  , , 0p qE   for some r large enough. 

Now here’s the cool part. Looking at the figure and keeping in mind the 

fact that the bidegree of 
rd  is  , 1r r  , we see that all differentials 

, , 1:r r r

p q p r q rd E E     either: 

1.  start or end at a zero group, or 

2.  r k  and    , ,p q k q  with 0q  , so that 

, 0, 1:k k k

k q q kd E E   . 

The following picture shows the kE -stage and the differential 

,0 0, 1:k k k

k kd E E  . The shaded columns contain the only possible non-

zero entries, since 
2

, 0p qE   if 0p   or k .  
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Hence  

(9.2)    
2 3

, , ,...... .k

p q p q p qE E E    

Thus if    , 0,0 ,p q    

   

   
, 0, 1

1

, , , 0, 1

ker : , ,

0 ker : , 0, 1

0

k k k

k q q k

k k k k

p q p q k q q k

d E E if p q k q

E E Co d E E if p q q k

Otherwise

 

 

 

  


      



 

Therefore, the spectral sequence collapses at 
1.kE 

  

Hence 
kd  is an isomorphism, i.e. , 0, 1

k k

k q q kE E    whenever 

   , 0,0k q  or 1 .q k   Using Equations (9.2) and (9.1) we can 

restate this as 

   1 .k k

q q kH S H S     

Using induction, starting with  0 0kH S  , we conclude that 

(9.3)    
 

0

1 , 0

0 .

k Z if q a k a
H S

otherwise

   
  


 

Exercise :  If 
fk l mS S S    is a fibration, then 2 1l m   and 

1k m  .  (In fact, it is a result of Adams that there are only such 

fibrations for m = 1, 2, 4 and 9.) 

Returning to our general discussion, notice that 
1

,

r

p qE 
  and ,p qE 

 are 

subquotients of ,

r

p qE ; in particular, since  2

, ;p q p qE H B G F   we 

conclude the Following fundamental fact. 

Theorem 9.7. The associated graded module to the filtration of  nG E

has graded summands which are subquotients of  ; .p n pH B G F
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This fact is the starting point for many spectral sequence calculations. 

For example, 

Theorem 9.8. If  ; 0p n pH B G F   for all p, then   0nG E  . 

Proof. Since 
2

, 0p n pE    for each p, it follows that , 0p n pE

   for each p 

and so   0nG E  . 

9.4. THE EDGE HOMOMORPHISMS AND 

THE TRANSGRESSION 
 

Before we turn to more involved applications, it is useful to know several 

facts about the Leray-Serre-Atiyah-Hirzebruch spectral sequence. These 

facts serve to identify certain homomorphisms which arise in the guts of 

the spectral sequence with natural maps induced by the inclusion of the 

fiber or the projection to the base in the fibration. 

Lemma 9.9. In the Leray-Serre-Atiyah-Hirzebruch spectral sequence 

there 

is a surjection 

2

0, 0,n nE E   for all n. 

Proof. Notice that 

0, , 11

0,

, 1 0,

ker :
1.

Im :

r r r

n r n rr

n r r r

r n r n

d E E
E for r

d E E

 

 


 


 

But, since 
2

, 0p qE   for 0p  , we must have 
2

, 0r qE   for all q and so 

also its sub quotient , 0r

r qE   for all q. 

Hence (ker 0, , 1:r r r

n r n rd E E   ) = 0,

r

nE  and so 

0,1

0, .
Im

r

nr

n r

E
E

d

   

Thus each 0,

r

nE  surjects to 
1

0,

r

nE 
 and hence also to the limit 0, .nE 

 

Proposition 5.14 says that that if V is any local coefficient system over a 

path connected space B, then 

 0 1; / . | , .H B V V v v v V B       

Applying this to  nV G F , it follows that there is a surjection 

(9.4)       0 ; .n nG F H B G F  
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We can now use the spectral sequence to construct a homomorphism

   ** .G F G E  Theorem 9.10 below asserts that this homomorphism 

is just the homomorphism induced by the inclusion of the fiber into the 

total space. 

Since 1, 1 0,nF     0, 0, 1, 1 0,/ .n n n n nE F F F G E

    

This inclusion can be pre composed with the surjections of Lemma 9.9 

and Equation (9.4) to obtain a homomorphism (called an edge 

homomorphism) 

(9.5)        2

0 0, 0,; .n n n n nG F H B G F E E G E     

Theorem 9.10. The edge homomorphism given by (9.5) equals the map 

   *
: n ni G F G E  induced by the inclusion :i F E  by the 

homology theory *
.G . 

Another simple application of the spectral sequence is to compute 

oriented bordism groups of a space in low dimensions. We apply the 

Leray-Serre-Atiyah-Hirzebruch spectral sequence to the fibration 

,Idpt X X   and take * *
,SOG    oriented bordism. 

In this case the Leray-Serre-Atiyah-Hirzebruch spectral sequence says 

    ; .SO SO

p q p qH X pt X   

Notice that the coefficients are untwisted; this is because the fibration is 

Trivial. Write  .SO SO

n n pt   Note that pt X  is split by the 

constant map, hence the edge homomorphism  SO SO

n n X    is a split 

injection, so by Theorem 9.10, the differentials , 1 0,:r r r

r n r nd E E    

whose targets are on the vertical edge of the first quadrant must be zero, 

i.e. every element of 
2

0,nE  survives to 0, .SO

n nE    

Recall from Section 9.7 that 0SO

n   for q = 1, 2, 3, and 
SO

q   Z for 

q = 0 and 4. Of course 0SO

q   for 0q  . Thus for 4,n p q    the 

only (possibly) non-zero terms are  2

,0n nE H X  and 
2

0,4 4 .SOE    

Hence 
2

, ,p n p p n pE E

   for n = 0, 1, 2, 3, and 4. From the spectral 

sequence one concludes 

   SO

n nX H X  for 0,1,2,3n   
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   4 .SO

n X Z H X    

It can be shown that the map    SO

n nX H X   is a Hurewicz map 

which takes :f M X  to   *
f M . In particular this implies that any 

homology class in  nH X  for n = 0, 1, 2, 3, and 4 is represented by a 

map from an oriented manifold to X. The map  4

SO X Z   is the map 

taking :f M X  to the signature of M.  

We next identify another edge homomorphism which can be constructed 

in the same manner as (9.5). The analysis will be slightly more involved 

and we will state it only in the case when *
G  is ordinary homology with 

coefficients in an R-module (we suppress the coefficients). 

In this context  2

, ; 0p q p qE H B H F   for 0q   or 0p  . So ,
*
* *
E  is 

a first-quadrant spectral sequence, i.e. , , 0r

p q p qE E   for 0q   or 

0p  . 

This implies that the filtration of  nH E  has finite length 

 1, 1 0, 1, 1 ,00 .......n n n n nF F F F H E         

Since  

, , 1, 10 /p n p p n p p n pE F F

       

if 0p   or 0n p  . 

The second map in the short exact sequence 

1,1 ,0 ,00 0n n nF F E

     

Can thus be thought of as a homomorphism 

(9.6)       ,0.n nH E E  

Lemma 9.11. There is an inclusion 

2

,0 ,0n nE E   

for all n. 

Proof. Since ,1 0r

n r rE     for 1r  , 

,0 , 11

,0 ,0 , 1

,1 ,0

ker :
ker : .

Im :

r r r

n n r rr r r r

n n n r rr r r

n r r n

d E E
E d E E

d E E

 

 

 


  


 

Thus 
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1 1

,0 ,0 ,0..... ......r r r

n n nE E E      

And hence 

2

,0 ,0 ,0.
r

n n n
r

E E E   

Note that the constant map from the fiber F to a point induces a 

homomorphism  0; .n nH B H F H B  If F is path connected, then the 

local coefficient system 0H F  is trivial and     0;n nH B H F H B

for all n. 

Theorem 9.12. The composite map (also called an edge homomorphism) 

     2

,0 ,0 ,0 0;n n n n n nH E F E E H B H F H B      

is just the map induced on homology by the projection :f E B  of 

the fibration. 

The long differential ,0 0, 1:k k k

k kd E E   in the spectral sequence for a 

fibration (for ordinary homology) has an alternate geometric 

interpretation called the transgression. 

 It is defined as follows. Suppose :f E B  is a fibration with fiber F. 

Fix 0k  . We assemble the homomorphism

   0*
: , , ,k kf H E F H B b  the isomorphism    0, ,k kH B H B b  

and the connecting homomorphism    1: ,k kH E F H F   for the 

long exact sequence of the pair (E,F) to define a (not well-defined, 

multi–valued) function    1: " "k kH B H F   as the “composite” 

       0 1
*: , , .
f

k k k kH B H B b H E F H F     

To make this more precise, we take as the domain of   the image of f∗ : 

     0* : , , ,k k kf H E F H B b H B   and as the range of   the 

quotient of  1kH F  by   (ker    0* : , ,k kf H E F H B b ). A 

simple diagram chase shows   is well-defined with this choice of 

domain and range. 

 Thus the transgression   is an honest homomorphism from a subgroup 

of  kH B  to a quotient group of  1 .kH F  intuitively, the 

transgression is trying his/her best to imitate the boundary map in the 

longexact homotopy sequence for a fibration (see Theorem 9.15 below). 
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Assume for simplicity that F is path connected, and consider the 

differential 

,0 0, 1:k k k

k kd E E   

in the spectral sequence for this fibration (taking * *
G H   ordinary 

homology). Its domain, ,0,
k

kE  is a subgroup of 

    2

,0 0;k k kE H B H F H B   because all differentials 
rd  into ,0

k

kE  

are zero for r < k (this is a first-quadrant spectral sequence) and hence 

,0

k

kE  is just the intersection of the kernels of ,0 , 1:r r r

k k r rd E E    for 

r k Similarly the range 0, 1

k

kE   of ,0 0, 1:k k k

k kd E E   is a quotient of 

  2

0, 1 0 1; ,k kE H B H F   which by Proposition 5.14 is just the 

quotient of  1kH F  by the action of  1 B . 

We have shown that like the transgression, the differential 

,0 0, 1:k k k

k kd E E   has domain identified with a subgroup of  kH B

and range a quotient of  1kH F . The following theorem identifies the 

transgression and this differential. 

Theorem 9.13 (Transgression Theorem). The differential 

,0 0, 1:k k k

k kd E E  in the spectral sequence of the fibration F E B   

coincides with the transgression  

 kH B   domain      range    1 /kH F   (ker *
f ). 

Check Your Progress 

1. Prove: In the Leray-Serre-Atiyah-Hirzebruch spectral sequence there 

is a surjection 

2

0, 0,n nE E   for all n. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain about the edge homomorphism’s and the transgression. 
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__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

9.5 LET US SUM UP 

 

1. A spectral sequence is a homological object of the following type: 

One is given a sequence of chain complexes  ,r rE d for r = 1, 2, . . . 

2. A filtration of an R-module A is an increasing union  

1 0 10 ...... ...... ........ .pF F F F A         

of submodules. A filtration is convergent if the union of the 'pF s  is A 

and their intersection is 0. 

3. Given a filtration  nF F  of an R-module A the associated 

graded module is the graded R-module denoted by Gr(A, F) and defined 

by  

 
1

, .
p

p
p

F
Gr A F

F 

  

4. The differential ,0 0, 1:k k k

k kd E E  in the spectral sequence of the 

fibration F E B   coincides with the transgression  

 kH B   domain      range    1 /kH F   (ker *
f ). 

9.6 KEY WORDS 
 

Spectral sequence 

Leray-Serre-Atiyah-Hirzebruch spectral sequence 

Edge homomorphism’s and the transgression 

9.7 QUESTIONS FOR REVIEW 
 

1. Explain about Spectral Sequence 

2. Leray-Serre-Atiyah-Hirzebruch spectral sequence 

3. Edge homomorphism’s and the transgression 
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9.9 ANSWERS TO CHECK YOUR 

PROGRESS QUESTIONS 
 

1. See section 9.4 

2. See section 9.5 
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UNIT-10 APPLICATIONS OF THE 

HOMOLOGY SPECTRAL SEQUENCE 
 

STRUCTURE 

10.0 Objective 

10.1 Introduction 

10.2 The five term and serre exact sequences 

10.3 Euler characteristics and fibrations 

10.4 The homology gysin sequence 

10.5 The cohomology spectral sequence 

10.6 Homology of groups 

10.7 Homology Of Covering Spaces 

10.8 Relative spectral sequence 

10.9 Let us sum up 

10.10 Key words 

10.11 Questions or review 

10.12 Suggestive readings and references 

10.13 Answers to check your progress  

 

10.0 OBJECTIVE 
 

In this unit we will learn and understand about the five-term and serre 

exact  sequences,  Enter characteristics and fibrations, The homology 

gysin sequence, The Cohomology special, Homology of groups, 

Homology of groups, Homology of covering spaces, Relative spectral 

sequences. 

10.1 INTRODUCTION 

 

In homological algebra and algebraic topology, a spectral sequence is a 

means of computing homology groups by taking successive 

approximations. Spectral sequences are a generalization of exact 

sequences, and since their introduction by Jean Leray (1946), they have 

become important computational tools, particularly in algebraic 

topology, algebraic geometry and homological algebra. 

https://en.wikipedia.org/wiki/Homological_algebra
https://en.wikipedia.org/wiki/Algebraic_topology
https://en.wikipedia.org/wiki/Exact_sequence
https://en.wikipedia.org/wiki/Exact_sequence
https://en.wikipedia.org/wiki/Jean_Leray
https://en.wikipedia.org/wiki/Spectral_sequence#CITEREFLeray1946
https://en.wikipedia.org/wiki/Algebraic_topology
https://en.wikipedia.org/wiki/Algebraic_topology
https://en.wikipedia.org/wiki/Algebraic_geometry
https://en.wikipedia.org/wiki/Homological_algebra
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10.2 THE FIVE-TERM AND SERRE 

EXACT SEQUENCES 
 

Corollary 10.1 :  (Five-term exact sequence). Suppose that 

fF E B   is a fibration with B and F path connected. Then there 

exists an exact sequence 

          2 2 0 1 1 1
* *; 0.
f f

H E H B H B H F H E H B    

 

The composite of the surjection     1 0 1;H F H B H F  with the map

    0 1 1;H B H F H E  in this exact sequence is the homomorphism 

induced by the inclusion F E , and   is the transgression. 

Proof. Take  * *
,G H   ordinary homology, perhaps with 

coefficients. The corresponding first quadrant spectral sequence has 

 2

, ;p q p qE H B H F  

and converges to  *
.H E  

The local coefficient system   1 0B Aut H F   is trivial since F is 

path connected. Thus     2

,0 0; .p p pE H B H F H B   

The following facts either follow immediately from the statement of 

previous Theorem or are easy to verify, using the bigrading of the 

differentials and the fact that the spectral sequence is a first–quadrant 

spectral sequence. 

1.   2

1 1,0 1,0 1,0

rH B E E E    for all 2r  .   

2.   2

2 2,0.H B E  

3.   2

0 1 0,1; .H B H F E  

4. 
3 2 2 2

2,0 2,0 2,0 2,0 0,1ker :rE E E d E E      for all 3.r   

5. 
3

0,1 0,1 0,1

rE E E     coker 
2 2 2

2,0 0,1:d E E  for all 3.r  . 

Exercise : Prove these five facts. 

The last two facts give an exact sequence 

22 2

2,0 2,0 0,1 0,10 0.dE E E E       

or, making the appropriate substitutions, the exact sequence 
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(10.2)  

     2,0 2 0 1 0,10 ; 0.E H B H B H F E        

Since the spectral sequence converges to  *
,H E  and the ,p n pE 

  form 

the associated graded groups for  ,nH E  the two sequences 

(10.3)      0,1 1 1,00 0E H E E      

and 

(10.4)      1,1 2 2,0 0E H E E     

are exact. 

Splicing the sequences (10.1), (10.2), and (10.3) together and using the 

first fact above one obtains the exact sequence 

          1,1 2 2 0 1 1 1; 0.E H E H B H B H F H E H B      

 

In this sequence the homomorphism    i iH E H B  is the edge 

homomorphism and hence is induced by the fibration : .f E B  The 

map 

    0 1 2;H B H F H E  Composes with     1 0 1;H F H B H F

to give the other edge homomorphism, induced by the inclusion of the 

fiber. The map 

    2 0 1;H B H B H F  is the transgression. These assertions follow 

by chasing definitions and using Theorems 10.5, 10.6 and 10.7. 

We have seen, beginning with our study of the Puppe sequences, that 

cofibrations give exact sequences in homology and fibrations give exact 

sequences in homotopy. One might say that a map is a “fibration or 

cofibration in some range” if there are partial long exact sequences. 

Corollary 10.1 implies that if 1B  acts trivially on  1 ,H F then the 

fibration is a cofibration in a certain range. A more general result whose 

proof is essentially identical to that of Corollary 10.1 is given in the 

following important theorem. 

Theorem 10.1 (Serre exact sequence). Let 
i fF E B   be a 

fibration 
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With B and F path connected and with 1B  acting trivially on *
.H F  

suppose 0pH B   for 0 p m   and 0qH F   for 0 .q n   Then 

there is an exact sequence 

1 1 1 2
* * * ........
i f i

m n m n m n m nH F H E H B H F

          

1
*..... 0.
f

H B   

Exercise: Prove Theorem 10.1. 

To understand this result, suppose B is (m − 1)-connected and F is 

 1n  - connected. The long exact sequence for a fibration shows that E 

is (min(m, n) − 1)-connected, so that by the Hurewitz theorem, 

0qH E   for         q < min(m, n). So trivially the low-dimensional part 

of the Serre exact sequence is exact; indeed all groups are zero for q < 

min(m, n). The remarkable fact is that the sequence remains exact for all 

min , .m n q m n    

10.3 EULER CHARACTERISTICS AND 

FIBRATIONS 
 

Let k be a field. Recall that the Euler characteristic of a space Z is 

defined to be the alternating sum      1 ;
n

nn
x Z Z k   of the 

Betti numbers     ; dim ;n k nZ k H Z k  whenever this sum is a 

finite sum of finite ranks. For finite CW-complexes it is equal to the 

alternating sum of the number of n-cells by the following standard 

exercise applied to the cellular chain complex. 

Exercise: Let  *
,C   be a chain complex over a field with i iC  finite-

dimensional. Show that the alternating sum of the ranks of the iC  equals 

the alternating sum of the ranks of the cohomology groups  *
, .iH C   

Given a product space E B F   with B and F finite CW-complexes, 

the Kunneth theorem implies that the homology with field coefficients is 

a tensor product 

     * * *
; ; ;H E k H B k H F k   

from which it follows that the Euler characteristic is multiplicative 

     . .x E x B x F  
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The following theorem extends this formula to the case when E is only a 

Product locally, i.e. fiber bundles, and even to fibrations. 

Notice that the homology itself need not be multiplicative for a nontrivial 

fibration. For example, consider the Hopffibration 
3 7 4.S S S   

The graded groups  7

* ;H S k  and    3 4

* *; ;H S k H S k  are not 

isomorphic, even though the Euler characteristics multiply (0 = 0 · 2). 

Theorem 10.2 Let :p E B  be a fibration with fiber F, let k be a field, 

and suppose the action of 1B  on  *
;H F k  is trivial. Assume that the 

Euler characteristics    ,x B x F  are defined (e.g. if B,F are finite cell 

complexes). Then  x E  is defined and 

     . .x E x B x F  

Proof. Since k is a field and the action of 1B  on  *
;H F k  is trivial, 

      ; ; ; ;p q p k qH B H F k H B k H F k   

by the universal coefficient theorem. Theorem 9.6 with  * * ;G H k   

implies that there exists a spectral sequence with 

   2

, ; ; .p q p qE H B k H F k   

By hypothesis, 
2

,p qE  is finite-dimensional over k, and is zero for all but 

finitely many pairs (p, q). This implies that the spectral sequence 

collapses at some stage and so , ,

r

p q p qE E   for r large enough. 

Define 

,

r r

n p p n pE E    

For each n and 2r   including r   . 

Then since the Euler characteristic of the tensor product of two graded 

vector spaces is the product of the Euler characteristics, 

     2

* .x E x B x F  

Notice that  * ,
r rE d  is a (singly) graded chain complex with homology 

1

* .rE  Exercise: shows that for any 2,r   

      1

* * * *, .r r r rx E x H E d x E    

Since the spectral sequence collapses    2

* * .x E x E  
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Since we are working over a field,  ;nH E k is isomorphic to its 

associated graded vector space , .p p n p nE E 

   In particular  ;nH E k

is finite-dimensional and dim  ; dim .n nH E k E  

Therefore, 

            2

** * ; .x B x F x E x E x H E k x E     

            

10.4 THE HOMOLOGY GYSIN 

SEQUENCE 
 

Theorem 10.3 Let R be a commutative ring. Suppose 
ff E B   

is a fibration, and suppose F is a R-homology n-sphere, i.e. 

 
0 ,

;
0 .

i

R if i or n
H F R

otherwise


 


 

Assume that 1B  acts trivially on  ; .nH F R  Then there exists an exact 

sequence (R-coefficients): 

1 1 1
* *.... .....
f f

r r r n r rH E H B H B H E H B        

 

Proof. The spectral sequence for the fibration (using ordinary homology 

with R-coefficients) has 

 
 2

,

; 0 ,
;

0 .

p

p q p q

H B R if q or n
E H B H F

otherwise

 
  


 

The following diagram shows the 2E -stage. The two shaded rows (q = 0 

and q = n) are the only rows that might contain a non-zero 
2

, .p qE  

 

Thus the only possibly non-zero differentials are 
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1 1 1

,0 1,: .n n n

p p n nd E E  

   

It follows that  

 1 2

,0 ,

0 ,
;

0 .

pn

p p q p q

H B if q or n
E E H B H F

otherwise




   


 

and 

(10.5)  

 1 1 1

, ,0 1,

1 1

1,0

0 0 ,

ker : 0

ker :

n n n

p q p p n n

n n

p n

if q or n

E d E E if q

co d E if q n

   

 

 

 

 


  
 

 

The filtration of  rH E  reduces to 

, , ,00 r n n r n n r rE F F H E

      

and so the sequences 

, ,00 0r n n r rE H E E 

     

are exact for each r. Splicing these with the exact sequences 

11 1

,0 ,0 1, 1,0 0
ndn n

p p p n n p n nE E E E
   

         

(obtained from Equation (10.5)) gives the desired exact sequence 

1 1 1
*..... ....
f

r r r n r rH E H B H B H E H B          

With the map labelled *
f  induced by :f E B  by Theorem 9.12. 

Exercise : Derive the Wang sequence. If 
nF E S   is a fibration 

over 
nS , then there is an exact sequence 

1..... ......r r r n rH F H E H F H F       

10.5 THE COHOMOLOGY SPECTRAL 

SEQUENCE 
 

The examples in the previous section show that spectral sequences are a 

Useful tool for establishing relationships between the homology groups 

of the three spaces forming a fibration. Much better information can 

often be obtained by using the ring structure on cohomology. We next 

introduce the cohomology spectral sequence and relate the ring structures 

on cohomology and the spectral sequence. The ring structure makes the 

cohomology spectral sequence a much more powerful computational tool 

than the homology spectral sequence. 
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Definition: A bigraded spectral sequence  , ,p q

r rE d is called a 

cohomology spectral sequence if the differential rd  has bidgree 

 ,1 .r r  

Notice the change in placement of the indices in the cohomology spectral 

sequence. The contravariance of cohomology makes it necessary to 

change the notion of a filtration. There is a formal way to do this, namely 

by “loweringindices”, for example rewrite  pH X  as  ,pH X  rewrite 

pF  as ,pF  Replace 
,p q

rE  by ,

r

p qE   and so forth. Unfortunately for this 

to work the notion of convergence of a spectral sequence has to be 

modified; with the definition we gave above the cohomology spectral 

sequence of a fibration will not converge. Rather than extending the 

formalism and making the notion of convergence technically more 

complicated, we will instead just make new definitions which apply in 

the cohomology setting. 

Definition: A (cohomology) filtration of an R-module A is an increasing 

union 

2 1 0 10 ...... ..... .... .pF F F F F A          

Of submodules. A filtration is convergent if the union of the pF ’ s is A 

and their intersection is 0. 

If A itself is graded, then the filtration is assumed to preserve the grading 

i.e. 
1 .p n p nF A F A    If A is graded, then we bigrade the filtration 

by setting 

, .p q q p qF F A    

Definition: Given a cohomology filtration  nF F  of an R-module A 

the associated graded module is the graded R-module denoted by Gr(A, 

F) and defined by 

  1
, .

p
p

p

F
Gr A F

F 
  

Definition: Given a bigraded cohomology spectral sequence  , , ,p q

r rE d

and a graded R-module 
*A , we say the spectral sequence converges to 

*A  and write 

,

2

p q p qE A   
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if: 

1.   for each (p, q) there exists an 0r  so that 
, 1 ,: p r q r p q

r r rd E E    is 

zero for all 0;r r  in particular there is an injection 
, ,

1

p q p q

r rE E   for all 

0r r , and 

2.  there is a convergent filtration of 
*A , so that for each n, the limit 

0

, ,p q p q

r r rE E    is isomorphic to the associated graded  * .
p

Gr A  

Theorem 10.4. Let 
fF E B   be a fibration, with B a path 

connected CW-complex. Let 
*G be an additive cohomology theory. 

Assume either that B is a finite-dimensional CW-complex or else that 

there exists an N so that   0qG F   for all q N . Notice that  1 B  

acts on  qG F  determining a local coefficient system. 

Then there exists a (cohomology) spectral sequence 

   ,

2; .q p q p q

pH B G F E G E   

There is a version of this theorem which applies to infinite CW-

complexes. 

Exercise:. State and prove the cohomology versions of the Serre, Gysin, 

and Wang sequences. Construct the cohomology edge homomorphisms 

and the cohomology transgression and state the analogues of Theorems 

10.1, 10.2, and 10.3. 

As an example we show how to compute the complex K-theory of 

complex projective space 
kCP   

The computation of complex K-theory was the original motivation for 

Atiyah-Hirzebruch to set up their spectral sequence. Complex K-theory 

is a cohomology theory satisfying    2n nK X K X , and its 

coefficients are given by 

   2

0

nK pt Z BU Z    

and 

   2 1

1 0.nK pt Z BU     

  Theorem 10.4, applied to the trivial fibration 

,Idk kpt CP CP   

says there exists a cohomology spectral sequence 
,p q

rE  satisfying 
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    ,

2; .p k q p q p q kH CP K pt E K CP   

The coefficients are untwisted since the fibration is trivial. Since 

 
,0 2

0 .

p k
Z if p iseven p k

H CP
otherwise

 
 


 

it follows that 

,

2

0 2

0 .

p q
Z if pand qare even p k

E
otherwise

 
 


 

This checkerboard pattern forces every differential to be zero, since one 

of the integers  ,1r r  must be odd! Notice, by the way, that this is not 

a first-quadrant spectral sequence since the K-theory of a point is non-

zero in positive and negative dimensions. 

Therefore , ,

2

p q p qE E  and the associated graded group to 

  ,, ,n k p n p

pK CP E 

  is a direct sum of 1k   copies of Z, one for each 

pair  ,p q  so that ,p q n   both p and q are even, and 0 2 .p k   

Inducting down the filtration we see that  n kK CP  has no torsion and 

hence is isomorphic to its associated graded group. Therefore 

 
1 ,

0 .

k
n k Z if n iseven

K CP
otherwise


 


 

To study the multiplicative properties of the cohomology spectral 

sequence, take 
*G  to be ordinary cohomology with coefficients in a 

commutative ring    * * ; .G E G E R  Let F E B   be a fibration. 

To avoid working with cup products with local coefficients, we assume 

that 1B  acts trivially on  * .H F  

Lemma 10.5.   ,

2;p q p qH B H F E  is a bigraded algebra over R. 

Proof. The cup product on 
*H B  induces a bilinear map 

     8 8; ; ; .p q r p r qH B H F H B H F H B H F H F    

Composingwith the coefficient homomorphism induced by the cup 

product on  *H F  

     8 8q qH F H F H F   

gives the desired multiplication 
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     , ,8 8 8 , 8

2 2 2; ; ; .p q r p q r p r q p r qE E H B H F H B H F H B H F E       

 

In many contexts the map 
,*,0 0,* * *

2 2 2E E E   is an isomorphism. 

Theorem 2.33 can be quite useful in this regard, For example if R is a 

field and B and F are simply connected finite CW-complexes then the 

map is an isomorphism. 

Theorem 10.6 The (Leray-Serre) cohomology spectral sequence of the 

fibration is a spectral sequence of R-algebras. More precisely: 

1.  
,* *

tE  is a bigraded R-algebra, i.e. there are products 

, , , .p q r s p r q s

t t tE E E     

2.  :t t td E E  is a derivation. This means that if 

, ,,p q r s

t ta E b E   

       . . 1 . .
p q

t t td a b da b a db


    

3.  The product on 1tE   is induced from the one on tE  starting with 

the product on 2E  given by cup products, as in Lemma  

4.  The following two ring structures on E coincide. (This assertion 

is a compatibility condition which relates the cup products on B, F, and 

E.) 

(a) Make 
*,*E  a bigraded R-algebra by using that each 

  , ,, p q r sa b E E    is represented by an element of , ,p q r s

t tE E  for t 

large enough. 

(b) The (usual) cup product 

     : * * *H E H E H E    

is “filtration preserving”, i.e. the diagram 

 

commutes (this comes from the construction of the filtration), and so this 

cup product induces a product on the associated graded module, i.e. on 

E . . 
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Exercise : Suppose that E is a graded ring and :d E E  is a 

differential  2 0d   and a derivation (Equation 9.11), then show that 

the cohomology  * ,H E d  inherits a graded ring structure. 

Exercise : Show that a filtration-preservingm ultiplication on a filtered 

algebra induces a multiplication on the associated graded algebra. 

Proposition : The rational cohomology ring of K(Z, n) is a polynomial 

ring on one generator if n is even and a truncated polynomial ring one 

one generator (in fact an exterior algebra on one generator) if n is odd: 

  
 

  2

,
* , ;

/

n

n n

Q l if n is even
H K Z n Q

Q l l if n is odd


 


 

Where  deg .nl n  

Proof. We induct on n. For   11, ,1n k Z S  which has cohomology 

ring   2

1 1/Z l l . 

Suppose the theorem is true for k n . Consider the Leray–Serre 

spectral sequence for path space fibration    , 1 ,K Z n P K Z n    

for cohomology with rational coefficients. Then 

       ,

2 , ; , 1 ; ; .p q p q p q

QE H K Z n Q H K Z n Q H P Q     

Since  , 0p qH P Q   for    , 0,0p q  , The differential 

0, 1 ,0: n n

n n nd E E   

must be an isomorphism. Since   0, 1 1 , 1 ; ,n n

nE H K Z n Q Q   

generated by 1,nl   and   ,0 ,0

2 , ; ,n n n

nE E H K Z n Q Q   generated 

by nl , it follows that  1n nd l   is a non-zero multiple of nl . By rescaling 

the generator nl  by a rational number assume inductively that 

 1 .n n nd l l    

Consider the cases n even and n odd separately. If n is even, then since 

  , 1 ; 0qH K Z n Q   unless 0q   or ,

21, 0p qn E   unless 

0q   or 1n  . This implies that , ,

10 p q p q

nE E    for    , 0,0p q   

and the derivation property of nd  says that   1

1

r r

n n n nd l l l 

   which, by 

induction on r, is non-zero. It follows easily from , ,

10 p q p q

nE E    for 
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   , 0,0p q  that   , ; 0pH K Z n Q  if p is not a multiple of n, and 

is isomorphic to Q for p nr . Since r

nl  is non-zero it generates 

  , ;nrH K Z n Q Q  and so   * , ;H K Z n Q  is a polynomial ring 

on nl  as required. 

If n is odd, the derivation property of nd  implies that 

       
12

1 1 1 1 1 11 2 .
n

n n n n n n n n n nd l d l l l d l l l


          

Hence 0,2 2 , 1

2: n n n

n nd E E   is an isomorphism. More generally by 

induction one sees that   1

1 1,
r r

n n n nd l rl l 

    so that 

    0, 1 , 1 1

2:
r n n r n

n nd E E
  

  is an isomorphism. It is then easy to see that 

the spectral sequence collapses at 1nE  , and hence 

  , ;pH K Z n Q Q   for p = 0 or n and zero otherwise.  

We will show how to use Theorem 154 to compute 
3

4S . This famous 

Theorem was first proven by G.W. Whitehead and Rohlin 

(independently). The argument is effortless using spectral sequences. 

Theorem 10.6
3

4 /2.S Z    

Proof. Since    3 3 3, ,3 ,Z H S S k Z       choose a map 

 3: ,3f S K Z representing the generator. For example,  ,3K Z  

can be obtained by adding 5 cells, 6 cells, etc. to 
3S  inductively to kill 

all the higher homotopy groups of 
3S  and then f can be taken to be the 

inclusion. The Hurewicz theorem implies that 

  3

3 3*
: ,3f S K Z   is an isomorphism.  

Pull back the fibration 

   ,2 * ,3K Z K Z   

(this is shorthand for    ,3 ,3K Z P K Z     where P is the 

contractible path space) via f to get a fibration 

     3,2 .K Z X S   

Alternatively, let X be the homotopy fiber of f, i.e.  3 ,3X S K Z   

is a fibration up to homotopy. Then    ,3 ,2K Z K Z  is the 

homotopy fiber of 
3X S   
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In the longexact homotopy sequence for a fibration,

  3

3 2: ,2 .S K Z    Hence 

3

0 3,

3.
k

k

if k
X

S if k





 


 

In particular, 
3

4 4 4 .H X X S    We will try to compute 4H X  using 

a spectral sequence. 

Consider the cohomology spectral sequence for the fibration (9.12). Then 

  , 3

2 ; ,2 .p q p qE H S H K Z  Recall that  ,2K Z is the infinite 

complex projective space CP 
whose cohomology algebra is the 1-

variable polynomial ring     * ,2H K Z Z c   where  deg 2.c   

Exercise: Give another proof of the fact that     * ,2H K Z Z c

using the spectral sequence for the path space fibration 

   ,1 * ,2K Z K Z   

and the identification of  ,1K Z  with 
1S . 

Let  3 3i H S  denote the generator. Then the 2E  -stage in the spectral 

sequence is indicated in the following diagram. The labels mean that the 

groups in question are infinite cyclic with the indicated generators. The 

empty entries are zero. The entries in this table are computed using 

Lemma 9.23. 

 

Since 
2 30H X H X    it follows that 

3d c i . Therefore, 

3 2 2d c ic ci ci    
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This implies that 
3,2 3,2 5

4/2Z E E H X    and 

0,4 0,4 4

40 .E E H X     

The universal coefficient theorem implies that 4 /2.H X Z  We 

conclude that 
3

4 4/2 ,Z X S    as desired. 

Corollary 10.9 1 /2n

n S Z    for all 3.n   In particular, 1 /2.S Z   

Proof. This is an immediate consequence of the Freudenthal suspension 

theorem (Theorem 8.7). 

Corollary 10.10 
2

4 /2.S Z    

Proof. Apply the longexact sequence of homotopy groups to the Hopf 

fibration 
1 3 2.S S S    

The reader should think about the strategy used to make these 

computations. On the one hand fibrations were used to relate homotopy 

groups of various spaces; on the other spectral sequences are used to 

compute homology groups. The Hurewitz theorem is then used to 

conclude that a homology group computation in fact gives a homotopy 

group computation. 

 

10.6. HOMOLOGY OF GROUPS 
 

Definition : Let G be a group. Define the cohomology of G with Z 

coefficients by 

    ; ,1 ; .k kH G Z H K G Z  

Similarly define the homology of G 

    ; ,1 ; .k

kH G Z H K G Z  

More generally define the homology and cohomology of G with 

coefficients in any R-module A to be the corresponding homology or 

cohomology of  ,1 .K G  

Corollary 10.27 implies that the homology and cohomology of a group 

are well-defined. Moreover, the assignment  ,1G K G is functorial 

and takes short exact sequences to fibrations. (The functoriality can be 

interpreted in two different ways. For every group one associates a 

homotopy type of spaces, and a group homomorphism leads to a 
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homotopy class of maps between the spaces. Alternatively, one can 

construct an honest functor from the category of groups to the category 

of spaces by giving a specific model of K(G, 1) related to the bar 

resolution in homological algebra.) 

Groups are very mysterious nonabelian things and thus are hard to 

study. Homology of groups gives abelian invariants, and has been very 

useful in group theory as well as topology.  

It follows that to understand the homology of groups related by exact 

sequences amounts to understanding the homology of a fibration, for 

which, as we have seen, spectral sequences are a good tool. 

It is easy to see that      ,1 ,1 ,1K A B K A K B   , and so the 

Kunneth theorem can be used to compute the cohomology of products of 

groups. Therefore the following result is all that is needed to obtain a 

complete computation of the cohomology of finitely generated abelian 

groups. 

Theorem 10.9 The cohomology of  /Z n  is given by 

 

0,

/ ; 0 ,

/ 0

q

Z if q

H Z n Z if q isodd and

Z n if q iseven




 
 

 

Proof. The exact sequence 0 / 0nZ Z Z n     induces a 

fibration sequence 

     ,2 ,2 / ,2K Z K Z K Z n   

(see Proposition 10.28). By looping this fibration twice (i.e. taking 

iterated homotopy fibers twice; see Theorem 6.40) we obtain the 

fibration 

     ,1 / ,1 ,2 .K Z K Z n K Z   

The fiber  ,1K Z  is a circle. Consider the spectral sequence for this 

fibration. The base is simply connected so there is no twisting in the 

coefficients. Notice that 

  
  

, 1

2

0 1,
,2 ;

,2 ; 0 1.
p q p q

p

if q and
E H K Z H S

H K Z Z if q or
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Using Lemma 10.23, the 2E  -stage is given by the following table, with 

the empty entries equal to 0 and the others infinite cyclic with the 

indicated generators (where i is the generator of  1 1H S ). 

 

Of course  2d i kc  for some integer k, and the question is: what 

might k be? We can find out by “peeking at the answer.” Since 

0,2 1,10 ,E E    we see that   2 2,0/ ,1 / .H K Z n E Z k   Since 

  1 / ,1 / ,K Z n Z n   by the universal coefficient theorem, we see 

that 2H  must be /Z n  and hence .k n   (Neat, huh?) 

Let c  be the image of c in 2,0

3E  . Here is a picture of the 3E  -stage. 

 

From this we see that the spectral sequence collapses at 3E , and that as 

graded rings   *,0 * / ,1 .E H K Z n   This not only completes the 

proof of the theorem, but also computes the cohomology ring   

  * / ,1 / .H K Z n Z c nc   
 

Also, we can get the homology from the cohomology by using the 

universal coefficient theorem: 

 

0,

/ / ,

0 0 .

q

Z if q

H Z n Z n if q isodd and

if q iseven




 
 

 

In applications, it is important to know the mod p-cohomology ring 

(which is the mod p-cohomology ring on an infinite-dimensional lens 
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space). By the K¨unneth theorem (which implies that, with field 

coefficients,      * * *H X Y H X H Y   , it suffices to consider 

the case where n is a prime power. Let pF  denote the field /Z pZ  for a 

prime p. 

Exercise: Show that    2 2* /2;H Z F F a   where a has degree one, 

and if      2, * / ; ,k k

p pp H Z p F a F b     where a has degree 

one and b has degree 2. Here  a  is the 2-dimensional graded algebra 

over pF  with  
1

pa F  with generator 1, and  
1

pa F   with 

generator a. (Hint: Use  /2,1RP K Z   and that . .a a a a    for 

1a H .) 

Exercise : Compute   /2, ; /2pH K Z n Z  for as many p and n as you 

can. Hint: try induction on n, using the fibration 

   /2, * /2, 1 .K Z n K Z n  
 

 

10.7 HOMOLOGY OF COVERING 

SPACES 
 

Suppose that :f X X  is a regular cover of a path connected space X. 

Letting     1 1*/ , :G X f X f X X     is a principal G-bundle 

(with G discrete). Thus G X X   is pulled back from the universal 

G-bundle 

G EG BG   . In other words, there is a diagram 

 

It follows that the sequence 

X X BG   
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is a fibration (up to homotopy). (One way to see this is to consider the 

Borel fibration .GX X EG X    Since G acts freely on X , there is 

another fibration / .GEG X EG X G    Since EG is contractible 

we see that the total space of the Borel fibration is homotopy equivalent 

to X.) Since G is discrete,  ,1BG K G . Applying the homology (or 

cohomology) spectral sequence to this fibration immediately gives the 

following spectral sequence of a covering space (we use the notation 

    * * ,1 .H G H K G  

Theorem 10.10 given a regular cover :f X X  with group of 

covering automorphisms     1 1*/ ,G X f X   there is a homology 

spectral sequence 

    2

,;p q p q p qH G H X E H X   

and a cohomology spectral sequence 

    ,

2; .P q p q p qH G H X E H X   

The twisting of the coefficients is just the one induced by the action of G 

on X  by covering transformations. 

Applying the five-term exact sequence (Corollary 9.14) in this context 

gives the very useful exact sequence 

          2 2 0 1 1 1; 0.H X H G H G H X H X H G      

Exercise : Use the spectral sequence of the universal cover to show that 

for a path connected space X the sequence 

      2 2 2 1 0X H X H X     

is exact, where   denotes the Hurewicz map. 

As an application we examine the problem of determiningwhic h finite 

groups G can act freely on 
kS . Equivalently, what are the fundamental 

groups of manifolds covered by the k-sphere? First note that if 

: k kg S S  is a fixed-point free map then g is homotopic to the 

antipodal map (can you 

remember how to prove this?), and so is orientation-preserving if k is 

odd and orientation-reversing if k is even. Thus if k is even, the 
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composite of any two non-trivial elements of G must be trivial, from 

which it follows that 

G has 1 or 2 elements. We shall henceforth assume k is odd, and hence 

that 

G acts by orientation-preserving fixed-point free homeomorphisms. 

Thus the cohomology spectral sequence for the cover has 

    ,

2

; 0

0

p q k p

p q
H G H S H G if q or q k

E
otherwise

   
 


 

and converges to  / .p q kH S G  This implies that the only possible 

non-zero differentials are 

, 1,0

1 1: p k p k

k k kd E E  

   

and that the spectral sequence collapses at 2.kE   

Notice that /kS G  is a compact manifold of dimension k, and in 

particular  / 0n kH S G   for .n k  This forces 
, 0p qE   whenever 

p q k  . Hence the differentials , 1,0

1 1: p k p k

k k kd E E  

  are 

isomorphisms for 1p  , and since these are the only possible non-zero 

differentials we have 

 , ,

1 2

p k p k p

kE E H G    and  1,0 1,0 1

1 2

p k p k p k

kE E H G     

    

so that    1p p kH G H G   for 1.p   

Thus G has periodic cohomology with period 1k  . Any subgroup of G 

also acts freely on 
kS by restrictingthe action. This implies the following 

theorem. 

Theorem 10.11 If the finite group G acts freely on an odd-dimensional 

sphere 
kS , then every subgroup of G has periodic cohomology of period 

1k  . 

As an application, first note the group / /Z p Z p  does not have 

periodic cohomology; this can be checked using the Kunneth theorem. 

We conclude that any finite group acting freely on a sphere cannot 

contain a subgroup isomorphic to / /Z p Z p . 
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10.8 RELATIVE SPECTRAL SEQUENCES 
 

In studying maps of fibrations, it is useful to have relative versions of the 

homology and cohomology spectral sequence theorems. There are two 

relative versions, one involving a subspace of the base and one involving 

a subspace of the fiber. 

Theorem 10.12 Let 
fF E B   be a fibration with B a CW-

complex. 

Let A B  a subcomplex. Let  1D p A  

1.  There is a homology spectral sequence with 

   2

,, ; , .p q p q p qH B A G F E G E D   

2.  If B is finite-dimensional or if there exist an N so that 

  0qG F   for all q N , there is a cohomology spectral sequence 

with 

   ,

2, ; , .p q p q p qH B A G F E G E D   

Theorem 10.13. Let 
fF E B   be a fibration with B  a CW-

complex. 

Let 0E E  so that 
0 0| :Ef E B  is a fibration with fiber 0F . 

1.  There is a homology spectral sequence with 

    2

0 , 0; , , .p q p q p qH B G F F E G E E   

2.  If B is finite-dimensional or if there exist an N so that 

 0, 0qG F F   for all q N , there is a cohomology spectral sequence 

with 

                                         ,

0 2 0; , , .p q p q p qH B G F F E G E E 
 

Check Your Progress 

1. Prove    ,

2;p q p qH B H F E  is a bigraded algebra over R 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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2. Prove The rational cohomology ring of K(Z, n) is a polynomial 

ring on one generator if n is even and a truncated polynomial ring one 

one generator (in fact an exterior algebra on one generator) if n is odd: 

  
 

  2

,
* , ;

/

n

n n

Q l if n is even
H K Z n Q

Q l l if n is odd


 


 

Where  deg .nl n
 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Explain about homology of covering spaces 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

10.9 LET US SUM UP                      
 

1. Let :p E B  be a fibration with fiber F, let k be a field, and 

suppose the action of 1B  on  *
;H F k  is trivial. Assume that the Euler 

characteristics    ,x B x F  are defined (e.g. if B,F are finite cell 

complexes). Then  x E  is defined and 

     . .x E x B x F  

2. A bigraded spectral sequence  , ,p q

r rE d is called a cohomology 

spectral sequence if the differential rd  has bidgree  ,1 .r r  

3. Given a cohomology filtration  nF F  of an R-module A the 

associated graded module is the graded R-module denoted by Gr(A, F) 

and defined by 

  1
, .

p
p

p

F
Gr A F

F 
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10.10 KEY WORDS 

    

   Homology Gysin sequence 

   Cohomology spectral sequence 

    Homology of groups 

   Homology of covering sequences 

 

10.11 QUESTIONS FOR REVIEW 
   

1. Explain about Euler characteristics and fimbriations. 

2. Explain about the Cohomology spectral sequence 

3. Explain about homology of covering spaces 

 

10.12 SUGGESTIVE READINGS AND 

REFERENCES 
 

1. Algebraic Topology – Satya Deo 

2. Lectures notes in Algebraic Topology- James F. Davis Paul Kirk 

3. Introduction to Algebraic Topology and Algebraic Geometry- U. 

Bruzzo 

4. Notes on the course : Algebraic Topology- Boris Botvinnik 

 5. R. Bott & L. Tu, Differential Forms in Algebraic Topology, Springer-

Verlag, New York 1982. 

 6.  B. Gray, Homotpy theory, Academic Press, New York 1975. 

7. M.J. Greenberg,Lectures on Algebraic Topology, Benjamin, New 

York 1967. 

8.  P.A.Griffiths & J.Harris, Principles of Algebraic Geometry. Wiley, 

New York 1994. 

9.  R. Harshorne, Algebraic geometry, Springer-Verlag,newYork1977. 

10. P.J.Hilton & U&.Stammbach,A Course in Homological Algebra, 

Springer-Verlag, NewYork 1971. 

11. F.hirzebruch, Topological Methods in Algebraic Geometry, Springer-

Verlag,Berlin 1966. 
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 12.  S.Kobayashi,differential Geometry of Complex Vector Bundles, 

Princeton University Press, Princeton 1987. 

13.  W.S.massey,Exact couples in algebraic topology, I,II 

14. E.H.Spanier,Algebraic topology, Corrected repreint, Springer-Verlag, 

New York-Berlin 1981. 

10.13 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 10.6 

2. See section 10.6 

3. See section 10.8 
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UNIT- 11.  COMPLEX MAINFOLDS 

AND VECTOR BUNDLES 
 

STRUCTURE 

11.0 Objective 

11.1 Introduction 

11.2 Holomorphic functions 

11.3 Complex manifolds 

11.4 Sub manifolds 

11.5 Properties of complex manifolds 

11.5 Dolbeault Cohomology 

11.7 Holomorphic vector bundles 

11.8 Chern classes of line bundles 

11.9 Chern classes of vector bundles 

11.10 Kodaira- Serre duality 

11.11 Connections 

11.12 Let us sum up 

11.13 Key words 

11.14 Questions for review 

11.15 Suggestive readings and references 

11.16 Answers to check your progress 

11.0 OBJECTIVE 

 

In this unit we will learn and understand about Holomorphic functions, 

Complex manifolds, Properties of complex manifolds, Dolebeault 

Cohomology, Holomorphic vector bundles and Connections. 

 

11.1 INTRODUCTION 

 

In this unit we give a sketchy introduction to complex manifolds. The 

reader is assumed to be acquainted with the rudiments of the theory of 

differentiable manifolds. 
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11.2 HOLOMORPHIC FUNCTIONS  

 

Let U C  be an open subset. We say that a function : f U C  is 

holomorphic if it is 
1C  and for all x U  its differential : xDf C C  is 

not only R-linear but also C-linear. If elements in C are written z x iy 

, and we set      , , , ,f x y x y i x y    then this condition can be 

written as  

(11.1)     ,x y y x      

(these are the Cauchy-Riemann conditions). If we use ,z z  as variables, 

the Cauchy-Riemann conditions read 0
z

f  , i.e. the holomorphic 

functions are the 
1C  function of the variable z. Moreover, one can show 

that holomorphic functions are analytic. 

The same definition can be given for holomorphic functions of several 

variables. 

Definition : Two open subsets U, V of 
nC  are said to biholomorphic if 

there exists a bijective holomorphic map :f U V  whose inverse is 

holomorphic. The map f itself is then said to be biholomorphic.  

11.3 COMPLEX MANIFOLDS 

 

Complex manifolds are defined as differentiable manifolds, but requiring 

that the local model is 
nC , and that the transition functions are 

biholomorphic.  

Definition 11.2. An n-dimensional complex manifold is a second 

countable Hausdor topological space X together with an open cover 

 iU  and maps  :  n

i iU C  which are homeomorphisms onto their 

images, and are such that all transition functions  are biholomorphisms. 

Example 11.3. (The Riemann sphere) Consider the sphere in 3R centered 

at the origin and having radius 
1

2
, and identify the tangent planes at 

   1 :      i j i i j i i jU U U U
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1
0,0,

2

 
 
 

 and 
1

0,0,
2

 
 

 
 with C. The stereographic projections give local 

complex coordinates 1 2, ;z z  the transition function 2 11/z z  is defined in 

 * 0 C C  and is bi holomorphic. 

1-dimensional complex manifolds are called Riemann surfaces. Compact 

Riemann surfaces play a distinguished role in algebraic geometry; they 

are all algebraic (i.e. they are sets of zeroes of systems of homogeneous 

polynomials), as we shall see in Chapter 8. 

Example 11.4. (Projective spaces) We define the n-dimensional 

complex projective space as the space of complex lines through the 

origin of 
1nC , i.e. 

 1

*

0
.

 


n

n

C
P

C
 

By standard topological arguments nP  with the quotient topology is a 

Hausdorff second countable space.  

Let  1: 0   n

nC P  be the projection, If  0 1,.....,  n nw w w C  we 

shall denote   0 ,....., .nw w w      The numbers  0 ,....., nw w  are said to 

be the homogeneous coordinates of the point  w . If  0 ,....., nu u  is 

another set of homogeneous coordinates for  w , then 
i iu w , with 

 * 0,....., . C i n   

Denote by 1 n
iU C  the open set where 0,iw   let  i iU U , and 

define a map   

 
0 1 1

0: , ,......, ,...., , ,......., . 
  

     
 

i i n
n n

i i i i i i

w w w w
U C w w

w w w w
 

The sets iU  cover nP , the maps i  are homeomorphisms, and their 

transition functions   

   1 : ,i j j j i iU U      

 
1 1 1

1 1 1
,....., ,....., , ,...... ,.....

i i n
n

i j i i i i i

z z z z
z z

z z z z z
 

 
  

  
 

, 

     
-th argumentj
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are biholomorphic, so that nP  is a complex manifold (we have assumed 

that i j ). The map   restricted to the unit sphere in 
1nC  is surjective, 

so that nP  is compact. The previous formula for n = 1 shows that nP  is 

biholomorphic to the Riemann sphere.  

The coordinates defined by the maps  ,i  usually denoted  1,....., nz z , 

are called affine or Euclidean coordinates.  

Example 11.5. (The general linear complex group). Let  

,k nM   { k n  matrices with complex entries, k n } 

,k nM  = { matrices in ,k nM of rank k}, i.e. 

, ,

1

{
l

k n k n

i

M A M


  such that det Ai 6= 0g 0}iA   

where ,....,i lA A  are the k k  minors of A. ,k nM  is a complex manifold 

of dimension kn; ,k nM  is an open subset in ,k nM , as its second 

description shows, so it is a complex manifold of dimension kn as well. 

In particular, the general linear group   ,,  k nGl n C M  is a complex 

manifold of dimension 
2n . Here are some of its relevant subgroups: 

(i)    { ,U n A Gl n  such that AA I   }; 

(ii)    {SU n A U n   such that det 1}A  ; 

These two groups are real (not complex!) manifolds, and dim

  2,U n n  dim   2 1.SU n n   

(iii) the group  , :Gl k n R formed by invertible complex matrices 

having a block form 

(11.2)      
0A

M
B C

 
  
 

 

where the matrices , ,A B C  are  , ,k k n k k    and

   n k n k   , respectively.  , :Gl k n C  is a complex manifold of 

dimension 
2 2 .k n nk   Since a matrix of the form (11.2) is invertible 

if and only if A and C are, while B can be any matrix,  , :Gl k n C is 

biholomorphic to the product manifold       ,, , .k nGl k C Gl n k C M  
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11.4 SUBMANIFOLDS 

Given a complex manifold X, a submanifold of X is a pair  ,Y  , where 

Y is a complex manifold, and :Y X   is an injective holomorphic 

map whose jacobian matrix has rank equal to the dimension of Y at any 

point of Y (of course Y can be thought of as a subset of X).  

Example  , :Gl k n C  is a submanifold of  ,Gl n C .  

Example 11.7. For any k n  the inclusion of 
1kC  into 

1nC  obtained 

by setting to zero the last n k  coordinates in 
1nC  yields a map 

;k nP P  the reader may check that this realizes kP  as a submanifold of 

nP .  

Example 11.8. (Grassmann varieties) Let  

,k nG   {space of k-dimensional planes in 
nC } 

(so 
1, 1n nG P  ). This is the Grassmann variety of k-planes in nR . 

Given a k-plane, the action of  ,Gl n R  on it yields another plane 

(possibly coinciding with the previous one). The subgroup of  ,Gl n R  

which leaves the given k-plane fixed is isomorphic to  , ;Gl k n R , so 

that  

 
 

,

,
.

, ;
k n

Gl n R
G R

Gl k n R
 

As the reader may check, this representation gives ,k nG  the structure of a 

complex manifold of dimension  k n k . Since in the previous 

reasoning  ,Gl n R  can be replaced by  U n , and since 

          , ;Gl k n R U n U k U n k , we also have the 

representation  

 
    

,k n

U n
G C

U k U n k
 

showing that ,k nG is compact.  

An element in ,k nG  singles out (up to a complex factor) a decomposable 

element in  ,k nC  
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1 ........ kv v     

where the iv  are a basis of tangent vectors to the given k-plane. So ,k nG

imbeds into    ,k n

NP C P where    1n

kN    (this is called the 

Plucker embedding. If a basis  1,....., nv v  is fixed in 
nC , one has a 

representation 

1.... 1

1,....., 1

..... ;
k k

k

n

i i i i

i i

P u u


    

The numbers 
1.... ki iP 1: the Plucker coordinates on the Grassmann variety.  

11.5 PROPERTIES OF COMPLEX 

MANIFOLDS 

 

Orientation.  All complex manifolds are oriented. Consider for 

simplicity the 1-dimensional case; the jacobian matrix of a transition 

function      ' , ,z f z x y i x y     is (by the Cauchy-Riemann 

conditions) 

x y x y

x y y x

J
   

   

   
    

   
 

so that det 
2 2 0,x yJ      and the manifold is oriented.  

Notice that we may always conjugate the complex structure, considering 

(e.g. in the 1-dimensional case) the coordinate change ;z z  in this 

case we have 
1 0

,
0 1

J
 

  
 

 so that the orientation gets reversed. 

Forms of type  ,p q . Let X be an n-dimensional complex manifold; 

by the identification 
2 ,n nC R  and since a biholomorphic map is a C


 

diffeomorphism, X has an underlying structure of 2n-dimensional real 

manifold. Let TX be the smooth tangent bundle (i.e. the collection of all 

ordinary tangent spaces to X). If  1,......, nz z is a set of local complex 

coordinates around a point ,x X  then the complexified tangent space 

xT X   admits the basis 
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11
,....., , ,.......,

nn

x x x x
z z z z

          
                  

 

This yields a decomposition 

  ' ''TX C T X T X  

Which is intrinsic because X has a complex structure, so that the 

transition functions are holomorphic and do not mix the vectors 
iz




 

with the
i

z




. As a consequence one has decomposition 

 
   * ,i p q

p q i
T X C X  where 

   
* *

, ' '' .p q p qX T X T X      

The elements in ,p qX  are called differential forms of type  ,p q , and 

can locally be written as 

  1 1

11....... , ....... , ....... ........ .p q

p q

i ji j

i i j j z z dz dz dz dz 


       

The compositions 

1,

, 1 *

, 1

p q

p q p qd

p q

X

X T X

X



 









 




 

Define differential operators ,   such that  

22 0         

(Notice that the Cauchy-Riemann condition can be written as 0f  ).  

11.6 DOLBEAULT COHOMOLOGY 

 

Another interesting cohomology theory one can consider is the Dolbeault 

cohomology associated with a complex manifold X. Let ,p q  denote the 

sheaf of forms of type  ,p q  on X. The Dolbeault (or Cauchy-Riemann) 

operator 
, , 1: p q p q    squares to zero. Therefore, the pair 
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  , ,p X   is for any 0p   a cohomology complex. Its cohomology 

groups are denoted by  ,p qH X


, and are called the Dolbeault 

cohomology groups of X. 

We have for this theory an analogue of the Poincare Lemma, which is 

sometimes called the  -Poincare Lemma (or Dolbeault or Grothendieck 

Lemma). 

Proposition 11.1. Let   be a poly cylinder in 
nC  (that is, the cartesian 

product of disks in C ). Then  , 0p qH


   for 1q  .  

Proof. 

Moreover, the kernel of the morphism 
,0 ,1: p p    is the sheaf of 

holomorphic p-forms p . Therefore, the Dolbeault complex of sheaves 

,p   is a resolution of p , i.e. for all 0,.....,p n (where n = dim  X) 

the sheaf sequence 

,0 ,1 ,10 ...... 0p p p p         

is exact. Moreover, the sheaves ,p q  are fine (they are XC


-modules). 

Then, exactly as one proves the de Rham theorem (Theorem 3.3.15), one 

obtains the Dolbeault theorem:  

Proposition 11.2. Let X be a complex manifold. For all , 0,p q   the 

cohomology groups  ,p qH X


and  ,q pH X  are isomorphic.  

11.7 HOLOMORPHIC VECTOR BUNDLES 

 

Basic definitions. Holomorphic vector bundles on a complex manifold 

X are defined in the same way than smooth complex vector bundles, but 

requiring that all the maps involved are holomorphic. 

Definition 11.1. A complex manifold E is a rank n holomorphic vector 

bundle on X if there are 

(i) an open cover  U  of X 

(ii) a holomorphic map :E X   

(iii) holomorphic maps        1: nU U C  

such that 

(i) 1 ,pr    where 1pr  is the projection onto the first factor of 
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  ;nU C   

(ii) for all ,p U U    the map 

      1

2 , : n npr p C C  

Is a linear isomorphism.  Vector bundles of rank 1 are called line 

bundles. With the data that define a holomorphic vector bundle we may 

construct holomorphic maps 

    : ,g U U Gl n C  

given by 

   1

2. , .g p x pr x      

These maps satisfy the cocycle condition 

g g g Id     on  .U U U     

The collection  ,U   is a trivialization of E.  

For everyx X , the subset  1

xE x E    is called the fibre of E 

over x. By means of a trivialization around , xx E  is given the structure 

of a vector space, which is actually independent of the trivialization. 

A morphism between two vector bundles E, F over X is a holomorphic 

map :f E F  such that for every x X  one has   ,x xf E F  and 

such that the resulting map :x x xf E F  is linear. If f is a 

biholomorphism, it is said to be an isomorphism of vector bundles, and E 

and F are said to be isomorphic. 

A holomorphic section of E over an open subset U X  is a 

holomorphic map :s U E  such that .s Id   With reference to the 

notation previously introduced, the maps 

       1: , , , 1,...,ii i
s U E s x x e i n  

   

 

where  ie  is the canonical basis of nR , are sections of E over .U  Let 

 E U  denote the set of sections of E over U ; it is a free module over 

the ring  O U of holomorphic functions on U , and its subset 

   1,....,
i

s i n


  is a basis. On an intersection U U  one has the 

relation 
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1

.
n

i kik
k

s g s 


  

Exercise 11.2. Show that two trivializations are equivalent (i.e. describe 

isomorphic bundles) if there exist holomorphic maps 

   : ,U Gl n C  such that 

(11.3)      
' 1g g      

Exercise 11.3. Show that the rule that to any open subset U X  

assigns the  XO U module of sections of a holomorphic vector bundle 

E defines a sheaf  (which actually is a sheaf of XO -modules).  

If E is a holomorphic (or smooth complex) vector bundle, with transition 

functions ,g , then the maps 

(11.4)       
1

' Tg g 



  

(where T denotes transposition) define another vector bundle, called the 

dual vector bundle to E, and denoted by *E . Sections of *E  can be 

paired with (or act on) sections of E, yielding holomorphic (smooth 

complex-valued) functions on (open sets of) X.  

Example 11.4. The space   ,nE X C with the projection onto the first 

factor, is obviously a holomorphic vector bundle, called the trivial vector 

bundle of rank n. We shall denote such a bundle by 
n

C  (in particular, C  

denotes the trivial line bundle). A holomorphic vector bundle is said to 

be trivial when it is isomorphic to 
nC . 

Every holomorphic vector bundle has an obvious structure of smooth 

complex vector bundle. A holomorphic vector bundle may be trivial as a 

smooth bundle while not being trivial as a holomorphic bundle. (In the 

next sections we shall learn some homological techniques that can be 

used to handle such situations). 

Example 11.5. (The tangent and cotangent bundles) If X is a complex 

manifold, the \holomorphic part" 'T X  of the complexified tangent 

bundle is a holomorphic vector bundle, whose rank equals the complex 

dimension of X. Given a holomorphic atlas for X, the locally defined 

holomorphic vector fields 
1
......,

nz z

 

 
 provide a holomorphic 
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trivialization of X, such that the transition functions of  'T X are the 

jacobian matrices of the transition functions of X. The dual of 'T X  is the 

holomorphic cotangent bundle of X. 

Example 11.6. (The tautological bundle) Let  1 1,.........., nw w  be 

homogeneous coordinates in nP . If to any np P  (which is a line in 

1nC ) we associate that line we obtain a line bundle, the tautological line 

bundle L of nP . To be more concrete, let us exhibit a trivialization for L 

and the related transition functions. If  iU  is the standard cover of nP , 

and np P , then 
iw  can be used to parametrize the points in the line p. 

So if p has homogeneous coordinates  0,.........., nw w , we may define  

     1:i i iU U C  as    . i

i u pw   if  p u . The transition 

function is then / .i k

ikg w w  The dual bundle *H L  acts on L, so 

that its fibre at     1, np u u C  can be regarded as the space of 

linear functionals on the line u pC L , i.e. as hyperplanes in 
1nC . 

Hence H is called the hyperplane bundle. Often L is denoted  1O  , 

and H is denoted  1O   the reason of this notation will be clear in 

Chapter 7. 

In the same way one defines a tautological bundle on the Grassmann 

variety , ;k nG  it has rank k.  

Exercise 11.7. Show that that the elements of a basis of the vector space 

of global sections of L can be identified homogeneous coordinates, so 

that dim  0 , 1nH P L n  . Show that the global sections of H can be 

identified with the linear polynomials in the homogeneous coordinates. 

Hence, the global sections of rH  are homogeneous polynomials of order 

r in the homogeneous coordinates.  

More constructions. Additional operations that one can perform on 

vector bundles are again easily described in terms of transition functions.  

(1) Given two vector bundles 1E  and 2E , of rank 1r  and 2r , their direct 

sum 1 2E E  is the vector bundle of rank 1 2r r  whose transition 

functions have the block matrix form   
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1

2

0

0

g

g





 
 
 
 

 

(2) We may also define the tensor product 1 2,E E , which has rank 1 2r r  

and has transition functions    1 2
.g g   This means the following: assume 

that 1E  and 2E  trivialize over the same cover  U , a condition we may 

always meet, and that in the given trivializations, 1E  and 2E  have local 

bases of sections 
  is


 and 
  kt


. Then 1 2,E E has local bases of 

sections     i k
s t

 
  and the corresponding transition functions are 

given by 

   
         

21
1 2

1 1

.
rr

i k m n
im km

m n

s t g g s t    
 

    

In particular the tensor product of line bundles is a line bundle. If L is a 

line bundle, one writes nL  for .......L L   (n factors). If L is the 

tautological line bundle on a projective space, one often writes 

 nL O n  , and similarly  nH O n  (notice that    
*

O n O n  

).  

(3) If E is a vector bundle with transition functions g , we define its 

determinant det E as the line bundle whose transition functions are the 

functions det g . The determinant bundle of the holomorphic tangent 

bundle to a complex manifold is called the canonical bundle K. 

Exercise 11.8. Show that the canonical bundle of the projective space 

 is isomorphic to . 

Example 11.9. Let  be the usual projection, and let 

 be homogeneous coordinates in . The tangent spaces 

to  are generated by  the vectors , and these are subject to the 

relation 

 

If  is a linear functional on  the vector field 

nP  1O n 

    1: 0n

nC P

 1 1,....., nw w 
nP

nP * ,
iw






1

*

1

0
n

i

i
i

w
w












l 1nC
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(i is fixed) satisfies  and therefore descends to . One 

can then define a map  

 

 

(Recall that the sections of H can be regarded as linear functionals on the 

homogeneous coordinates). The map E is apparently surjective. Its kernel 

is generated by the section ;  notice that this 

is the image of the map  

 

The morphism  may be regarded as a sheaf morphism

, the second sheaf being the tangent sheaf of , i.e., 

the sheaf of germs of holomorphic vector fields on , and one has an 

exact sequence  

 

Called the Euler sequence. 

11.8 CHERN CLASS OF LINE BUNDLES 

 

Chern classes of holomorphic line bundles. Let X a complex 

manifold. We define Pic (X) (the Picard group of X) as the set of 

holomorphic line bundles on X modulo isomorphism. The group 

structure of Pic (X) is induced by the tensor product of line bundles 

 in particular one has  (think of it in terms of transition 

functions - here  denotes the trivial line bundle, whose class  is the 

identity in Pic(X)), so that the class  is the inverse in Pic(X) of the 

class . 

Let O denote the sheaf of holomorphic functions on X, and  the 

subsheaf of nowhere vanishing holomorphic functions. If  then the 

    i
v w l w

w






   v w v w  nP

 1
:

n

nE H TP
 



   1 1,...., n i i
q

w
  





  , 1,....., 1i

i w w i n   

     
1 1 1, 1 ,....., .

n nC H w w

 1n

nH TP
 



 
 1

1
n

n

P nO TP
 

 nP

nP

 
 1

0 1 0
n n

n

P P nO O TP
 

   

';L L  *L LC

C  C

*L  

 L

*O

'LCL
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transition functions  of the two bundles with respect to a cover 

 of X are 2-cocycles , and satisfy  

   with    

so that one has an identification Pic . The long 

cohomology sequence associated with the exact sequence 

 

 (where exp ) contains the segment  

 

where  is the connecting morphism. Given a line bundle L, the element 

 

is the first Chern class
1
 of L. The fact that  is a group morphism means 

that  

 

In general, the morphism  is neither injective nor surjective, so that 

(i) the first Chern class does not classify the holomorphic line bundles on 

X; the group 

 

Classifies the line bundles having the same _rst Chern class. 

(ii) Not every element in  is the first Chern class of a 

holomorphic line bundle. 

The image of  is a subgroup  of  , called the 

Neron-Severi group of X. 

Exercise 11.1. Show that all line bundles on  are trivial. 

Exercise 11.2. Show that there exist nontrivial holomorphic line bundles 

which are trivial as smooth complex line bundles.  

Notice that when X is compact the sequence 

 

',g g 

 U

*O

'g g 
 






  * ,O U  

   1 *,X CH X O

   exp *0 0C O O

2 iff e 

            1 1 1 * 2 2, , , , ,H X Z H X O H X O H X C H X O



        2

1 ,c L L H x C



     ' '

1 1 1 .c L L c L c L  



     0 1 1ker , /Im ,Pic X CH X O H X C

 2 ,H X C

1c  NS X  2 ,H X C

nC

       0 0 0 *0 , , , 0H X C H X O H X O
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is exact, so that . If in addition dim 

 we have , so that every element in  is 

the first Chern class of a holomorphic line bundle.
2
 

From the definition of connecting morphism we can deduce an explicit 

formula for a Cech cocycle representing  with respect to the cover 

 

 

From this one can easily prove that, if  is a holomorphic 

map, and L is a line bundle on Y , then  

. 

1
This allows us also to define the first Chern class of a vector bundle E of 

any rank by letting . 

2
Here we use the fact that if X is a complex manifold of dimension n, 

then H
k
(X;O) = 0 for all  . 

Smooth line bundles. The first Chern class can equally well be 

defined for smooth complex line bundles. In this case we consider the 

sheaf C of complex valued smooth functions on a differentiable manifold 

X, and the subsheaf of nowhere vanishing functions of such type. The 

set of isomorphism classes of smooth complex line bundles is identified 

with the cohomology group . However now the sheaf C is 

acyclic, so that the obstruction morphism  establishes an isomorphism

. The first Chern class of a line bundle L is again 

defined as  but now classifies the bundle (i.e. 

 if and only if ).  

Exercise 11.3. (A rather pedantic one, to be honest...) Show that if X is a 

complex manifold, and L is a holomorphic line bundle on it, the first 

Chern classes of L regarded as a holomorphic or smooth complex line 

bundle coincide. (Hint: start from the inclusion , write from it a 

diagram of exact sequences, and take it to cohomology ...)  

 

     0 1 1, / ,Pic X H X O H X C

1X   2 , 0H X O   2 ,H X C

 1c L

  :U

    1

1
log log log .

2
c L g g g

i
   

  

:f X Y

    * #

1 1c f L f c L

   1 1 detc E c E

k n

*C

 1 *,H X C



   1 * 2, ,H X C CH X C

    1 ,c L L  1c L

'LCL    '1 2c L c L

O C
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11.9 CHERN CLASSES OF VECTOR 

BUNDLES 
 

In this section we define higher Chern classes for complex vector 

bundles of any rank. Since the Chern classes of a vector bundle will 

depend only on its smooth structure, we may consider a smooth complex 

vector bundle E on a differentiable manifold X. We are already able to 

define the first Chern class  of a line bundle L, and we know that 

. We proceed in two steps: 

 (1) we first define Chern classes of vector bundles that are direct sums 

of line bundles; 

(2) and then show that by means of an operation called cohomology base 

change we 

can always reduce the computation of Chern classes to the previous 

situation. 

Step 1. Let  denote the symmetric function of order i in k 

arguments.
3
. 

Since these functions are polynomials with integer coeffcients, they can 

be regarded as functions on the cohomology ring . In 

particular, if are classes in , we have 

 

If  where the 's are line bundles, for 

 we define the i-th Chern class of E as 

 

3
The symmetric functions are defined as 

 

Thus, for instance, 

 

 

 

As a first reference for symmetric functions. 

 1c L

   2

1 ,c L H X

, 1.... ,i i k 

  ,H X C

1,...., k   2 ,H X C

       2

1,...., , .i

i k H X C

1 ...... ,kE L L   iL

1....i k

          2

1 1 1,....., , .i

i i kc E c L c L H X C

 
1 1

1

1

1 .....

,......., ........ .
i

i k j j

j j n

x x x x
   

 

 1 1,......., .......i k kx x x x   

 1 1 2 1 3 1,......., .......i k k kx x x x x x x x    

 1 1,......., ...... .k k kx x x x 
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We also set  identifying  with  (assuming that X 

is connected) we may think that  

Step 2 relies on the following result (sometimes called the splitting 

principle), which we do not prove here. 

Proposition 11.1. Let E be a complex vector bundle on a differentiable 

manifold X. There exists a differentiable map  where Y is a 

differentiable manifold, such that 

(1) the pullback bundle  is a direct sum of line bundles; 

(2) the morphism  is injective; 

(3) the Chern classes  lie in the image of the morphism  

Definition 11.2. The i-th Chern class  of E is the unique class in 

 such that  

We also define the total Chern class of E as 

 

The main property of the Chern classes are the following. 

(1) If two vector bundles on X are isomorphic, their Chern classes 

coincide. 

(2) Functoriality: if  is a differentiable map of differentiable 

manifolds, and E is a complex vector bundle on X, then 

 

(3) Whitney product formula: if E, F are complex vector bundles on X, 

then  

  

(4) Normalization: identify the cohomology group  with  

by identifying the class of the hyperplane H with . Then 

 

These properties characterize uniquely the Chern classes (cf. e.g. [14]). 

Notice that, in view of the splitting principle, it is enough to prove the 

properties (1), (2), (3) when E and F are line bundles. Then (1) and (2) 

 0 1;c E   0 ,H X C C

    0

0 , .c E H X C

: ,f Y X

*f E

    # : , ,f H X C H Y C

 *

ic f E
#.f

 ic E

 2 ,iH X C     # * .i if c E c f E

     



 
0

, .
k

i

i

c E c E H X C

:f Y X

    # * .i if c E c f E

     .c E F c E c F  

 2 ,nH P C C

1 C

 1 1.c H 
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are already known, and (3) follows from elementary properties of the 

symmetric functions. 

The reader can easily check that all Chern classes (but for , obviously) 

of a trivial vector bundle vanish. Thus, Chern classes in some sense 

measure the twisting of a bundle. It should be noted that, even in smooth 

case, Chern classes do not in general classify vector bundles, even as 

smooth bundles (i.e., generally speaking,  does not imply 

). However, in some speci_c instances this may happen. 

Exercise 11.3. Prove that for any vector bundle E one has 

 

11.10 KODAIRA-SERRE DUALITY 

 

In this section we introduce Kodaira-Serre duality, which will be one of 

the main tools in our study of algebraic curves. To start with a simple 

situation, let us study the analogous result in de Rham theory. Let X be a 

differentiable manifold. Since the exterior product of two closed forms is 

a closed form, one can define a bilinear map 

 

As we already know, via the Cech-de Rham isomorphism this product 

can be identified with the cup product. If X is compact and oriented, by 

composition with the map
4 

 

Where n = dim X, we obtain a pairing 

 

Which is quite easily seen to be nondegenerate. Thus one has an 

isomorphism 

 

(this is a form of Poincare duality). 

If X is an n-dimensional compact complex manifold, in the same way we 

obtain a nondegenerate pairing between Dolbeault cohomology groups 

(11.5)      

And a duality 

0c

   c E c F

ECF

   1 1 detc E c E

           , .i i i j

DR DR DRH X H X H X w w     

      ,n

DR
X

X X

H X C w w

              ,i n i

DR DR

X

H X H X R w w

   *i n i

DR DRH X CH X

    

  , , ,p q n p n qH X H X C
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Exercise 11.1. (1) Let E be a holomorphic vector bundle on a complex 

manifold X, denote by  the sheaf of its holomorphic sections, and by 

 the sheaf of its smooth sections. Show (using a local trivialization 

and proving that the result is independent of the trivialization) that one 

can define a -linear sheaf morphism  

(11.11)       

which obeys a Leibniz rule 

 

for  

(2) Show that  defines an exact sequence of sheaves 

(11.7)   

 

4
This map is well defined because different representatives of  differ 

by an exact form, whose integral over X vanishes. 

Here  is the sheaf of holomorphic p-forms. In particular,  

 

(3) By taking global sections in (11.7), and taking coholomology from 

the resulting (in general) non-exact sequence, one defines Dolbeault 

cohomology groups with coefficients 

in E, denoted . Use the same argument as in the proof of de 

Rham's theorem 

to prove an isomorphism 

(11.8)    . 

By combining the pairing (11.5) with the action of the sections of  on 

the sections of E we obtain a nondegenerate pairing 

 

and therefore a duality 

 

Using the isomorphism (11.8) we can express this duality in the form 

 

    

 

*, , .p q n p n qH X CH X



 

0,1
E      

 E E ffs f s s     

   , .s U f C U   

E

,0 ,1 ,0 ...... 0E E Ep p p p n                

 w

P

 0,1ker : .E       

 , ,p qH X E


   
 , , ,p q q pH X E CH X

*E

    

 
 , , *, ,p q n p n qH X E H X E C

    

 

*, , *, , .p q n p n qH X E CH X E

        
*

*, , .p q n pq n qH X C H X



Notes 

90 

This is the Kodaira-Serre duality. In particular for  we get 

(denoting  

det , the canonical bundle of X) 

. 

This is usually called Serre duality. 

11.11 CONNECTIONS 
 

In this section we give the basic definitions and sketch the main 

properties of connections. 

The concept of connection provides the correct notion of differential 

operator to differentiate the sections of a vector bundle. 

8.1. Basic definitions. Let E a complex, in general smooth, vector 

bundle on a differentiable manifold X. We shall denote by  the sheaf of 

sections of E, and by the sheaf of differential 1-forms on X. A 

connection is a sheaf morphism 

 

satisfying a Leibniz rule 

 

for every section s of E and every function f on X (or on an open subset). 

The Leibniz rule also shows that  is -linear. The connection  can 

be made to act on all sheaves , thus getting a morphism 

 

by letting 

 

If  is a cover of X over which E trivializes, we may choose on any 

a set  of basis sections of  (notice that this is a set of r 

sections, with r = rk E). 

Over these bases the connection  is locally represented by matrix-

valued differential 

1-forms : 

 

0q 

nK   

*T X

     
* *, ,p n pH X CH X K



1

X

1: X    

   :fs f s df s   

 

k

X  

1: ,k k

X X     

     1 .
k

w s dw s w s      

 U

U  s  U



w

  .s w s    
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Every  is as an  matrix of 1-forms. The 's are called 

connection 1-forms. 

Exercise 11.1. Prove that if  denotes the transition functions of E 

with respect to the chosen local basis sections (i.e., ), the 

transformation formula for the connection 1-forms is 

(11.9)      

The connection is not a tensorial morphism, but rather sati_es a Leibniz 

rule; as a consequence, the transformation properties of the connection 1-

forms are inhomogeneous 

and contain an affine term. 

Exercise 11.2. Prove that if E and F are vector bundles, with connections 

and , then the rule 

 

(minimal coupling) defines a connection on the bundle  (here s 

and t are sections of E and F, respectively). 

Exercise 11.3. Prove that is E is a vector bundle with a connection , 

the rule  

 

dfines a connection on the dual bundle (here  , s are sections of  

and E, respectively, and <  ,  > denotes the pairing between sections of 

 and E). 

It is an easy exercise, which we leave to the reader, to check that the 

square of the connection 

 

is f-linear, i.e., it satisfies the property 

 

for every function f on X. In other terms,  is an endomorphism of the 

bundle E with coefficients in 2-forms, namely, a global section of the 

bundle  End (E). It is called the curvature of the connection , 

and we shall denote it by . On local basis sections  it is represented 

by the curvature 2-forms  defined by 
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Exercise 11.4. Prove that the curvature 2-forms may be expressed in 

terms of the connection 1-forms by the equation (Cartan's structure 

equation) 

(11.10)      

Exercise 11.5. Prove that the transformation formula for the curvature 2-

forms is  

 

Due to the tensorial nature of the curvature morphism, the curvature 2-

forms obey a homogeneous transformation rule, without affine term.  

Since we are able to induce connections on tensor products of vector 

bundles (and also on direct sums, in the obvious way), and on the dual of 

a bundle, we can induce connections on a variety of bundles associated to 

given vector bundles with connections, and thus differentiate their 

sections. The result of such a differentiation is called the covariant 

differential of the section. In particular, given a vector bundle E with 

connection , we may differentiate its curvature as a section of  

End (E). 

Proposition 11.6. (Bianchi identity) The covariant differential of the 

curvature of a connection is zero, . 

Proof. A simple computation shows that locally is represented by the 

matrixvalued 3-forms 

 

By plugging in the structure equation (11.10) we obtain . 

Connections and holomorphic structures. If X is a complex manifold, and 

E a  complex vector bundle on it with a connection , we may split 

the latter into its (1,0) and (0,1) parts,  and , according to the 

splitting  Analogously, the curvature splits into 

its (2,0), (1,1) and (0,2) parts, 

Obviously we have 
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In particular  is a morphism  If  

then  is a differential for the complex . The same condition 

implies that the kernel of the map 

(11.11)       

has enough sections to be the sheaf of sections of a holomorphic vector 

bundle. 

Proposition 11.7. If , then the  vector bundle E admits a 

unique holomorphic structure, such that the corresponding sheaf of 

holomorphic sections is isomorphic to the kernel of the operator (11.11). 

Moreover, under this isomorphism the operator (11.11) concides with the 

operator  defined in Exercise 11.1. 

Proof. Cf. [18], p. 9.  

Conversely, if E is a holomophic vector bundle, a connection  on E is 

said to be compatible with the holomorphic structure of E if  

 Hermitian bundles. A Hermitian metric h of a complex vector bundle 

E is 

a global section of  which when restricted to the fibres yields a 

Hermitian form on them (more informally, it is a smoothly varying 

assignation of Hermitian structures on the fibres of E). On a local basis 

of sections , of E, h is represented by matrices of functions on 

 which, when evaluated at any point of , are Hermitian and 

positive definite. The local basis is said to be unitary if the corresponding 

matrix h is the identity matrix. 

A pair (E; h) formed by a holomorphic vector bundle with a hermitian 

metric is called a hermitian bundle. A connection  on E is said to be 

metric with respect to h if for every pair s, t of sections of E one has 

 

In terms of connection forms and matrices representing h this condition 

reads 

(11.12)      

Where  denotes transposition and  denotes complex conjugation (but 

no transposition, i.e., it is not the hermitian conjugation). This equation 

''
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implies right away that on a unitary frame, the connection forms are 

skew-hermitian matrices. 

Proposition 11.8. Given a hermitian bundle (E; h), there is a unique 

connection on E which is metric with respect to h and is compatible 

with the holomorphic structure of E. 

Proof. If we use holomophic local bases of sections, the connection 

forms are of 

Type (1,0). Then equation (11.12) yields 

(11.13)       

And this equations shows the uniqueness. As for the existence, one can 

easily check that the connection forms as defined by equation (11.13) 

satisfy the condition (11.9) and therefore define a connection on E. This 

is metric w.r.t. h and compatible with the holomorphic structure of E by 

construction.  

Example 11.9. (Chern classes and Maxwell theory) The Chern classes of 

a complex vector bundle E can be calculated in terms of a connection on 

E via the so-called Chern-Weil representation theorem. Let us discuss a 

simple situation. Let L be a complex line bundle on smooth 2-

dimensional manifold X, endowed with a connection, and let F be the 

curvature of the connection. F can be regarded as a 2-form on X. In this 

case the Chern-Weil theorem states that 

(11.14)       

where we regard  as an integer number via the isomorphism 

 given by integration over X. Notice that the Chern class 

of F is independent of the connection we have chosen, as it must be. 

Alternatively, we notice that the complex-valued form F is closed 

(Bianchi identity) and therefore singles out a class [F] in the 

complexified de Rham group  the class 

 is actually real, and one has the equality 
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in .  If we consider a static spherically symmetric magnetic 

field in , by solving the Maxwell equations we find a solution which 

is singular at the origin. If we do not consider the dependence from the 

radius the vector potential defines a connection on a bundle L defined on 

an  which is spanned by the angular spherical coordinates. The fact 

that the Chern class of L as given by (11.14) can take only integer values 

is known in physics as the quantization of the Dirac monopole. 

 

Check Your Progress 

1. Explain about Complex manifolds. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Explain about Holomorphic vector bundles.. 
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3. Explain about Chern classes of vector bundles. 

__________________________________________________________
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__________________________________________________________ 

11.12 LET US SUM UP 

 

1. Two open subsets U, V of  are said to biholomorphic if there 

exists a bijective holomorphic map  whose inverse is 

holomorphic. The map f itself is then said to be biholomorphic.  

2. An n-dimensional complex manifold is a second countable Hausdor 

topological space X together with an open cover  and maps  

 which are homeomorphisms onto their images, and are such 

that all transition functions  
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3. Let  be a poly cylinder in  (that is, the cartesian product of 

disks in ). Then  for . 

4. Given two vector bundles  and , of rank  and , their direct 

sum  is the vector bundle of rank  whose transition 

functions have the block matrix form   

 

5. The i-th Chern class  of E is the unique class in  

such that  

We also define the total Chern class of E as 
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11. 14 QUESTIONS FOR REVIEW 
 

1. Explain about Holomorphic functions 

2. Explain about Sub manifolds 

3. Explain about Chern classes of vector bundles 
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1. See section 11.4 

2. See section 11.8 
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UNIT-12 SIMPLICIAL COMPLEXES 

AND SIMPLICAL     HOMOLOGICAL 

GROUPS 
 

STRUCTURE 

12.0 Objective 

12.1 Introduction 

12.2 Geometrical independence 

12.3 Simplical complexes in Euclidian spaces 

12.4 The chain groups of a Simplical complex 

12.5 Boundary Homomorphism’s 

12.6 The homology groups of a simplical complex 

12.7 Simplical maps and induced homomorphisms 

12.8 Connectedness and Ho
(K) 

12.9 Let us sum up 

12.10 Key words 

12.11 Questions for review 

12.12 Suggestive readings and references 

12.13 Answers to check your progress 

12.0 OBJECTIVE 

 

In this unit we will learn and understand about Geometrical 

independence, Simplical complexes in Euclidian spaces, Simplical maps, 

The chain groups of a simplical complex, Boundary homomorphism, The 

homology groups of a simplical complex. 

12.1 INTRODUCTION 

 

In algebraic topology, simplicial homology formalizes the idea of the 

number of holes of a given dimension in a simplicial complex. This 

generalizes the number of connected components . 

Simplicial homology arose as a way to study topological spaces whose 

building blocks are n-simplices, the n-dimensional analogs of triangles. 

https://en.wikipedia.org/wiki/Algebraic_topology
https://en.wikipedia.org/wiki/Simplicial_complex
https://en.wikipedia.org/wiki/Connected_component_(topology)
https://en.wikipedia.org/wiki/Topological_spaces
https://en.wikipedia.org/wiki/Simplices
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This includes a point (0-simplex), a line segment (1-simplex), a triangle 

(2-simplex) and a tetrahedron (3-simplex). By definition, such a space 

is homeomorphic to a simplicial complex (more precisely, the geometric 

realization of an abstract simplicial complex). Such a homeomorphism is 

referred to as a triangulation of the given space. Many topological spaces 

of interest can be triangulated, including every smooth manifold. 

Simplicial homology is defined by a simple recipe for any abstract 

simplicial complex.  

It is a remarkable fact that simplicial homology only depends on the 

associated topological space. As a result, it gives a computable way to 

distinguish one space from another. 

Singular homology is a related theory which is better adapted to theory 

rather than computation. Singular homology is defined for all topological 

spaces and obviously depends only on the topology, not any 

triangulation; and it agrees with simplicial homology for spaces which 

can be triangulated. 

 Nonetheless, because it is possible to compute the simplicial homology 

of a simplicial complex automatically and efficiently, simplicial 

homology has become important for application to real-life situations, 

such as image analysis, medical imaging, and data analysis in general. 

12.2 GEOMETRICAL INDEPENDENCE 

 

Definition: Points  in some Euclidean space  are said to 

be geometrically independent (or affine independent) if the only solution 

of the linear system 

 

is the trivial solution  

It is straightforward to verify that  are geometrically 

independent if and only if the vectors  are 

linearly independent. It follows from this that any set of geometrically 
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https://en.wikipedia.org/wiki/Homeomorphic
https://en.wikipedia.org/wiki/Simplicial_complex
https://en.wikipedia.org/wiki/Geometric_realization
https://en.wikipedia.org/wiki/Geometric_realization
https://en.wikipedia.org/wiki/Abstract_simplicial_complex
https://en.wikipedia.org/wiki/Triangulation_(topology)
https://en.wikipedia.org/wiki/Manifold
https://en.wikipedia.org/wiki/Singular_homology
https://en.wikipedia.org/wiki/Image_analysis
https://en.wikipedia.org/wiki/Medical_imaging
https://en.wikipedia.org/wiki/Data_analysis
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independent points in  has at most elements. Note also that if a 

set consists of geometrically independent points in , then so does 

every subset of that set. 

Definition :  A q-simplex in  is defined to be a set of the form 

 

where  are geometrically independent points of . The 

points  are referred to as the vertices of the simplex. The 

non-negative integer q is referred to as the dimension of the simplex.  

Note that a 0-simplex in  is a single point of R
k
 a 1-simplex in R

k
 is a 

line segment in R
k
, a 2-simplex is a triangle, and a 3-simplex is a 

tetrahedron. Let  be a q-simplex in R
k
 with vertices . If x 

is a point of  then there exist real numbers  such that 

and for . 

Moreover  are uniquely determined ; if   and 

 then  and , hence 

 for all , since  are geometrically independent. 

We refer to  as the bary centric coordinates of the point  of 

 

Lemma 12.1: Let be a non-negative integer, let  be a q-simplex in 

, and let  be a q-simplex in , where and . Then  

and  are homeomorphic. 

Proof : Let  be the vertices of , and let  be 

the vertices of . The required homeomorphism h:  is given by 

 

For all  satisfying  for  and  
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A homeomorphism between two q-simplices defined as in the above 

proof is referred to as a simplicial homeomorphism. 

12.3. SIMPLICIAL COMPLEXES IN 

EUCLIDEAN SPACES 

 

Definition Let  and  be simplices in R
k
. We say that  is a face of 

 if the set of vertices of  is a subset of the set of vertices of . A 

face of  is said to be a proper face if it is not equal to  itself. An r-

dimensional face of  is referred to as an r-face of . A 1-dimensional 

face of  is referred to as an edge of . 

Note that any simplex is a face of itself. Also the vertices and edges of 

any simplex are by definition faces of the simplex. 

Definition: A finite collection K of simplices in R
k
 is said to be a 

simplicial complex if the following two conditions are satisfied: 

 if  is a simplex belonging to K then every face of  also belongs 

to K,  

 if  and  are simplices belonging to K then either  or  

else  is a common face of both  and . 

The dimension of a simplicial complex K is the greatest non-negative 

integer n with the property that K contains an n-simplex. The union of all 

the simplices of K is a compact subset  of R
k
 referred to as the 

polyhedron of K. (The polyhedron is compact since it is both closed and 

bounded in R
k
) 

Example: Let  consist of some -simplex  together with all of its 

faces. Then  is a simplicial complex of dimension , and . 

Lemma 12.2 Let K be a simplicial complex, and let X be a topological 

space. A function f:  is continuous on the polyhedron  of 

K if and only if the restriction of f to each simplex of K is continuous on 

that simplex. 

Proof: If a topological space can be expressed as a finite union of closed 

subsets, then a function is continuous on the whole space if and only if 

its restriction to each of the closed subsets is continuous on that closed 
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set. The required result is a direct application of this general principle. 

We shall denote by Vert K the set of vertices of a simplicial complex K 

(i.e., the set consisting of all vertices of all simplices belonging to K). A 

collection of vertices of K is said to span a simplex of K if these vertices 

are the vertices of some simplex belonging to K. 

Definition: Let K be a simplicial complex in R
k
. A subcomplex of K is a 

collection L of simplices belonging to K with the following property: 

 if  is a simplex belonging to L then every face of  also belongs to 

L. Note that every subcomplex of a simplicial complex K is itself a 

simplicial complex. 

Definition Let  be the vertices of a q-simplex  in some 

Euclidean space R
k
. We define the interior of the simplex  to be the 

set of all points of  that are of the form  where  for 

 and  One can readily verify that the interior of the 

simplex  consists of all points of  that do not belong to any proper 

face of . (Note that, if  then the interior of a simplex defined in 

this fashion will not coincide with the topological interior of  unless 

dim  = k.) 

Note that any point of a simplex  belongs to the interior of a unique 

face of . Indeed let  be the vertices of , and let  

Then  where  for  and . The 

unique face of  containing x in its interior is then the face spanned by 

those vertices  for which . 

Lemma 12.3 Let K be a finite collection of simplices in some Euclidean 

space R
k
 ,and let  be the union of all the simplices in K. Then K is a 

simplicial complex (with polyhedron ) if and only if the following 

two conditions are satisfied: 

 K contains the faces of its simplices, 

 every point of  belongs to the interior of a unique simplex of K. 
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Proof Suppose that K is a simplicial complex. Then K contains the faces 

of its simplices. We must show that every point of  belongs to the 

interior of a unique simplex of K. Let  Then x belongs to the 

interior of a face  of some simplex of K (since every point of a 

simplex belongs to the interior of some face). But then , since K 

contains the faces of all its simplices. Thus x belongs to the interior of at 

least one simplex of K. 

Suppose that x were to belong to the interior of two distinct simplices  

and  of K. Then x would belong to some common face  of  

and  (since K is a simplicial complex). But this common face would be 

a proper face of one or other of the simplices  and  (since  ), 

contradicting the fact that x belongs to the interior of both  and  . 

We conclude that the simplex  of K containing x in its interior is 

uniquely determined, as required. 

Conversely, we must show that any collection of simplices satisfying the 

given conditions is a simplicial complex. Since K contains the faces of 

all its simplices, it only remains to verify that if  and  are any two 

simplices of K with non-empty intersection then  is a common 

face of  and . 

Let  Then x belongs to the interior of a unique simplex  of 

K. However any point of  or belongs to the interior of a unique face 

of that simplex, and all faces of  and  belong to K. It follows that  

is a common face of  and  , and thus the vertices of  are vertices 

of both  and . We deduce that the simplices  and  have vertices 

in common, and that every point of  belongs to the common face 

 of  and  spanned by these common vertices. But this implies that 

 and thus  is a common face of both  and  , as 

required. 

Definition A triangulation (K, h) of a topological space X consists of a 

simplicial complex K in some Euclidean space, together with a 

homeomorphism  mapping the polyhedron  of K onto X. 

The polyhedron of a simplicial complex is a compact Hausdorff space. 

Thus if a topological space admits a triangulation then it must itself be a 

compact Hausdorff space. 
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Lemma 12.4 Let X be a Hausdorff topological space, let K be a 

simplicial complex, and let  be a bijection mapping  onto 

X. Suppose that the restriction of h to each simplex of K is continuous on 

that simplex. Then the map  is a homeomorphism, and thus 

(K, h) is a triangulation of X. 

Proof:  Each simplex of K is a closed subset of , and the number of 

simplices of K is finite. It follows from Lemma 12.2 that is 

continuous. Also the polyhedron of K is a compact topological space. 

But every continuous bijection from a compact topological space to a 

Hausdorff space is a homeomorphism. Thus (K; h) is a triangulation of 

X. 

12.4 SIMPLICIAL MAPS 

 

Definition A simplicial map  between simplicial complexes K 

and L is a function  Vert K  Vert L from the vertex set of K to that 

of L such that  span a simplex belonging to L 

whenever  span a simplex of K. 

Note that a simplicial map  between simplicial complexes K 

and L can be regarded as a function from K to L: this function sends a 

simplex  of K with vertices  to the simplex  of L 

spanned by the vertices . 

A simplicial map  also induces in a natural fashion a 

continuous map between the polyhedra of K and L, where 

 

Whenever  for and  span a 

simplex of K. The continuity of this map follows immediately from a 

straightforward application of Lemma 12.2. Note that the interior of a 

simplex  of K is mapped into the interior of the simplex  of L. 

There are thus three equivalent ways of describing a simplicial map: as a 
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function between the vertex sets of two simplicial complexes, as a 

function from one simplicial complex to another, and as a continuous 

map between the polyhedra of two simplicial complexes. In what 

follows, we shall describe  a simplicial map using the representation that 

is most appropriate in the given context. 

 

12.5 THE CHAIN GROUPS OF A 

SIMPLICIAL COMPLEX  

 

Let K be a simplicial complex. For each non-negative integer q, let 

 be the additive group consisting of all formal sums of the form 

 

Where  are integers and  are (not necessarily 

distinct) vertices of K that span a simplex of K for   (In 

more formal language, the group  is the free Abelian group 

generated by the set of all -tuples of the form , 

where  span a simplex of K.)   

We recall some basic facts concerning permutations. A permutation of a 

set S is a bijection mapping S onto itself. The set of all permutations of 

some set S is a group; the group multiplication corresponds to 

composition of permutations. A transposition is a permutation of a set S 

which interchanges two elements of S, leaving the remaining elements of 

the set fixed. If S is finite and has more than one element then any 

permutation of S can be expressed as a product of transpositions. In 

particular any permutation of the set can be expressed as a 

product of transpositions  that interchange  and  for some 

. 

Associated to any permutation  of a finite set S is a number , known 

as the parity or signature of the permutation, which can take on the 

values . If can be expressed as the product of an even number of 

transpositions, then  if can be expressed as the product of an 

 q K
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odd number of transpositions then  The function  is a 

homomorphism from the group of permutations of a finite set S to the 

multiplicative group  (i.e.,  for all permutations  

and of the set S). Note in particular that the parity of any transposition 

is .  

Definition The  chain group  of the simplicial complex K is 

defined to be the quotient group  where  is the subgroup 

of generated by elements of the form  where 

 are not all distinct, and by elements of the form 

 

Where  is some permutation of  with parity . For 

convenience, we define  when  or  dim K, where 

dim K is the dimension of the simplicial complex K. An element of the 

chain group  is referred to as q-chain of the simplicial complex K. 

We denote by  the element  of 

 corresponding to .  The following results follow 

immediately from the definition of . 

Lemma 12.5:  Let  be vertices of a simplicial complex K 

that span a simplex of K. Then 

  if  are not all distinct,  

  for any permutation  of 

the set  

Example : If  and  are the endpoints of some line segment then 

 If  and  are the vertices of a triangle in some 

Euclidean space then  
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 qC K

0 1, ,....., qv v v

0 1, ,....., 0qv v v  0 1, ,....., qv v v

      0 10 1
, ,....., , ,....., qq

v v v v v v  
 

 0,1,......., .q

0v
1v

0 1 1 0, , .v v v v  0 1,v v
2v

0 1 2 1 2 0 2 0 1 2 1 0, , , , , , , ,v v v v v v v v v v v v   

0 2 1 1 0 2, , , , .v v v v v v   
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Definition: An oriented q-simplex is an element of the chain group 

 of the form , where  are distinct and 

span a simplex of K.  

An oriented simplex of K can be thought of as consisting of a simplex of 

K (namely the simplex spanned by the prescribed vertices), together with 

one of two possible `orientations' on that simplex. Any ordering of the 

vertices determines an orientation of the simplex; any even permutation 

of the ordering of the vertices preserves the orientation on the simplex, 

whereas any odd permutation of this ordering reverses orientation. 

Any q-chain of a simplicial complex K can be expressed as a sum of the 

form 

 

Where  are integers and are oriented q-

simplices of K. If we reverse the orientation on one of these simplices  

then this reverses the sign of the corresponding coefficient . If 

 represent distinct simplices of K then the coefficients 

 are uniquely determined.  

Example: Let  and  be the vertices of a triangle in some 

Euclidean space. Let K be the simplicial complex consisting of this 

triangle, together with its edges and vertices. Every 0-chain of K can be 

expressed uniquely in the form 

 

for some . Similarly any 1-chain of K can be expressed 

uniquely in the form  

for some  and any 2-chain of K can be expressed uniquely 

as n  for some integer n. Lemma 12.6 Let K be a simplicial 

complex, and let A be an additive group. 

Suppose that, to each -tuple of vertices spanning a 

simplex of K, there corresponds an element  of A, 

where 

 qC K
0 1, ,....., qv v v 0 1, ,....., qv v v

1 1 2 2 ........ s sn n n    

1 2, ,........., sn n n 1 2, ,........., s  

i

in

1 2, ,........., s  

1 2, ,........., sn n n

0 1,v v
2v

0 0 1 1 2 2n v n v n v 

0 1 2, , n n n R

0 1 2 1 2 0 2 0 1, , ,m v v m v v m v v 

0 1 2, , ,m m m R

0 1 2, ,v v v

 1q   0 1, ,......., qv v v

 0 1, ,......., qv v v
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 unless  are all distinct,  

  changes sign on interchanging any two adjacent 

vertices   and  

Then there exists a well-defined homomorphism from  to A 

which sends  to  whenever  

span a simplex of K. This homomorphism is uniquely determined. 

Proof:  The given function defined on -tuples of vertices of K 

extends to a well-defined homomorphism  given by 

 

for all . Moreover  ker 

unless are all distinct. Also  

 ker  

For all permutations  of  since the permutation  can be 

expressed as a product of transpositions  that interchange  

with  for some  and leave the rest of the set fixed, and the parity  

of  is given by  when the number of such transpositions is even, 

and by  when the number of such transpositions is odd. Thus the 

generators of  are contained in ker , and hence  ker 

. The required homomorphism  is then defined by the 

formula 

 

12.6 BOUNDARY HOMOMORPHISMS 

 

Let K be a simplicial complex. We introduce below boundary 

homomorphisms between the chain groups of K. 

If  is an oriented q-simplex of K then  is a -chain which 

 0 1, ,......., 0qv v v  0 1, ,......., qv v v

 0 1, ,......., 0qv v v 

1jv  .jv

 qC k

0 1, ,......, qv v v  0 1, ,......, qv v v 0 1, ,......, qv v v

 1q 

 : q K A  

   0 1 0 1

1 1

, ,......, , ,......, .
s s

r r r r r r

r q r q

r r

n v v v n v v v 
 

 
 

 
 

   0 1

1

, ,......,
s

r r r

r q q

r

n v v v K


  0 1, ,......, qv v v 

 0 1, ,......, qv v v

        0 10 1
, ,......, , ,......, qq

v v v v v v  
  

  0,1,......,q 

 1,j j 1j 

j j 

 1  

1  

 0

q K   0

q K 

  qC K A 

 0 1 0 1

1 1

, ,......, , ,......, .
s s

r r r r r r

r q r q

r r

n v v v n v v v 
 

 
 

 
 

   1:q q qC K C K 

  q   1q 
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is a formal sum of the -faces of , each with an orientation 

determined by the orientation of . 

Let  be a q-simplex with vertices . For each integer  

between 0 and q we denote by  the oriented 

-face  

of the simplex  obtained on omitting from the set of vertices of . 

In particular  

 

Similarly if  and  are integers between 0 and , where , we 

denote by  

the oriented -face  of the 

simplex  obtained on omitting  and  from the set of vertices of 

We now define a `boundary homomorphism'  

for each integer q. Define if  or  dim K. (In this case one 

or other of the groups  and  is trivial.) Suppose then that 

 dim K. Given vertices  spanning a simplex of 

K, let 

 

Inspection of this formula shows that  changes sign 

whenever two adjacent vertices  and  are interchanged. 

Suppose that  for some  and  satisfying . Then  

 

since the remaining terms in the expression defining  

contain both  and . However  can be 

transformed to  by making  transpositions 

which interchange  successively with the vertices  

 1q  



 0 1, ,......, qv v v j

0 1,........, ,.........,j qv v v

 1q 
0 1 1,........, , ,.........,j j qv v v v 

 jv 

0 1 1 0 1 0 1, ,......, ,......, , ,....., , ,......, .qq q q qv v v v v v v v v v  

j k q j k

0 ,....., ,......., ,.....j k qv v v v

 2q
0 1 1 1 1,....., , ,......., , ,.....,j j k k qv v v v v v   

 jv kv

    1:q q qC K C K 

0q  0q  q 

 qC K  1qC K

0 q   0 1, ,......, qv v v

    10 1 0

0

, ,......, 1 ,......, ,......,
q

j

q q

j

v v v v v v


 

 0 1, ,......, qv v v

1iv  iv

j kv v j k j k

     0 1 0 0, ...., 1 ,....... ,......., 1 ,....... ,......., ,
j k

j kq q qv v v v v v v v v    

 0 1, ...., qv v v

jv kv  0 ,....... ,.......,k qv v v

 0 ,....... ,.......,j qv v v 1k j 

jv 1 2 1, ,....., .j j kv v v  
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Therefore 

 

Thus  unless  are all distinct. It now 

follows immediately from Lemma 12.2 that there is a well-defined 

homomorphism , characterized by the property 

that  

 

Whenever  span a simplex of K. Lemma 12.7: 

 for all integers q. 

Proof:  The result is trivial if , since in this case . Suppose 

that . Let  be vertices spanning a simplex of K. Then  

 

 

 

 

(Since each term in this summation over  and  cancels with the 

corresponding term with  and  interchanged). The result now follows 

from the fact that the homomorphism  is determined by its 

values on all oriented q-simplices of K. 

 

12.7 THE HOMOLOGY GROUPS OF A 

SIMPLICIAL COMPLEX  

 

Let K be a simplicial complex. A q-chain z is said to be a q-cycle if 

. A q-chain b is said to be a q-boundary if  for some 

-chain . The group of q-cycles of K is denoted by , and 

 
1

0 0,....... ,......., 1 ,....... ,.......,
k j

k jq qv v v v v v
 

 

 0 1, ,......, 0qv v v  0 1, ,......, qv v v

   1:q q qC K C K 

    10 1 0

0

, ,......, 1 ,......, ,......,
q

j

q q q

j

v v v v v v


  

0 1, ,......, qv v v

1 0q q  

2q  1 0q 

2q  0 1, ,...., qv v v

     1 0 1 1 0

0

, ,......, 1 ,......, ,......,
q

j

jq q q q q

j

v v v v v v 



    

 
1

0

0 0

1 ,......, ,......, ,......,
q j

j k

k j q

j k

v v v v




 

  

 
1

0

0 1

1 ,......, ,......, ,......,
q q

j k

j k q

j k j

v v v v
 

  

  

0

j k

j k

1q q 

0q z  '

1qb c 

 1q 
'c  qZ K
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the group of q-boundaries of K is denoted by . Thus  is 

the kernel of the boundary homomorphism , and 

 is the image of the boundary homomorphism 

. However , by Lemma 12.3. 

Therefore . But these groups are subgroups of the 

Abelian group . We can therefore form the quotient group 

, where . The group  is referred to as 

the qth homology group of the simplicial complex K. Note that 

 if . 

or  dim K (since  and  in these cases). It can be 

shown that the homology groups of a simplicial complex are topological 

invariants of the polyhedron of that complex. 

The element  of the homology group  determined 

by  is referred to as the homology class of the q-cycle z. Note 

that  for all  and  if and 

only if  for some -chain c.  

Proposition 12.8: Let K be a simplicial complex. Suppose that there 

exists a vertex w of K with the following property:  

 If vertices  span a simplex of K then so do .  

Then  and  is the zero group for all . 

Proof: Using Lemma 12.6, we see that there is a well-defined 

homomorphism  characterized by the property 

that   

whenever  span a simplex of K. Now  for 

all vertices v of K. It follows that 

 

 qB K  qZ K

   1:q q qC K C K 

 qB K

   1 1:q q qC K C K   1 0q q  

   q qB K Z K

 qC K

 qH K
   

 
q q

q

H K Z K

B K


 qH K

  0qH K  0q 

q    0qZ K    0qB K 

   qz H K  qH K

 qz Z K

     1 2 1 2z z z z    1 2 ,qz z Z K    1 2z z

1 2 1qz z c    1q 

0 1, ,....., qv v v 0 1, , ,....., qw v v v

 0 ,H K R  qH K 0q 

   1:q q qD C K C K

 0 1 0 1, ,....., , , ,.....,q q qD v v v w v v v

0 1, ,....., qv v v   1 0D v v w  

   
8 8 8

0

1 1 1

r r r r r

r r r

n v n w n v w B K
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for all . But  (since  by 

definition), and thus  It follows that there is a well-

defined surjective homomorphism from to  induced by the 

homomorphism from  to  that sends  to 

 Moreover this induced homomorphism is an isomorphism from 

to . 

Now let . Then   

 

     

   

   

  

Whenever  span a simplex of K. Thus  

 

For all . In particular  for all , and 

hence Z .  It follows that  is the zero group for 

all , as required.  

Example: The hypotheses of the proposition are satisfied for the 

complex consisting of a simplex  together with all of its faces: we 

can choose w to be any vertex of the simplex . 

 

12.8 SIMPLICIAL MAPS AND INDUCED 

HOMOMORPHISMS  

 

Any simplicial map  between simplicial complexes K and L 

 
8
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r r

r

n v C K


    0 0Z K C K 0 0 

   

 
0 0
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.
H K C K

B K



 0H K R

 0C K R  
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1

r r

r

n v C K
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.r
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 0H K R

0q 

  1 0 1, ,........q q qD v v v

 1 0 1, , ,........q qw v v v 

 
1

10 1 0

0

, ,........ 1 , ,...... ,........,
q

j

q q

j

v v v w v v v




  

  0 1 1 0 1, ,........ , ,.......,q q q qv v v D v v v  

0 1, ,....., qv v v

     1 1q q q qD c D c c    

 qc C K   1q qz D z   qz Z K

   q qZ K B K  qH K

0q 

K 



: K L 
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induces well-defined homomorphisms  of chain 

groups, where   

whenever  span a simplex of K. (The existence of these 

induced homomorphisms follows from a straightforward application of 

Lemma 12.2.) Note that  unless 

 are all distinct.  Now  for each 

integer q. Therefore  and  for 

all integers q. It follows that any simplicial map  induces well-

defined homomorphisms of homology groups, 

where  for all q-cycles . It is a trivial 

exercise to verify that if K, L and M are simplicial complexes and if 

 and are simplicial maps then the induced 

homomorphisms of homology groups satisfy  

12.9 CONNECTEDNESS AND  

 

Lemma 12.9 Let K be a simplicial complex. Then K can be partitioned 

into pairwise disjoint subcomplexes  whose polyhedral are 

the connected components of the polyhedron  of K.  

Proof Let  be the connected components of the 

polyhedron of K, and, for each , let  be the collection of all 

simplices  of K for which  . If a simplex belongs to  for all 

 then so do all its faces. Therefore  are subcomplexes of 

K. These subcomplexes are pairwise disjoint since the connected 

components  of  are 

pairwise disjoint. Moreover, if  then  for some , since 

 is a connected subset of , and any connected subset of a 

topological space is contained in some connected component. But then 

 . It follows that  and 

   :q q qC K C L 

       0 1 0 1, ,....., , ,....q q qv v v v v v   

0 1, ,....., qv v v

 0 1, ,....., 0q qv v v 

     0 1, ,.... qv v v   1q q q q    

    q q qZ K Z L      q q qB K B L 

: K L 

   * : q qH K H L 

    * : qz z      qz Z K

: K L  : L M 

  * **
.   

 0H K

1 2, ...., rK K K

K

1 2, ,....., rX X X

j jK

 jX  jK

j 1 2, ...., rK K K

1 2, ,....., rX X X K

K  jX  j

 K

jK  1 2 ...... rK K K K   
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as required. 

The direct sum  of additive Abelian groups 

 is defined to be the additive group consisting of all r-

tuples  with  for  where  

 

Lemma 12.10 : Let K be a simplicial complex. Suppose that 

 where  are pairwise disjoint. 

Then  

for all integers q.  

Proof: We may restrict our attention to the case when  dim K, 

since  if  or  dim K. Now any q-chain c of K can 

be expressed uniquely as a sum of the form  where 

 is a q-chain of  for  It follows that  

 

 

Now let z be a q-cycle of K (i.e.,  satisfies ). We 

can express z uniquely in the form  where  is a 

q-chain of  for  Now  

 

and is a -chain of  for  It follows that 

  Hence each  is a q-cycle of  , and thus  

 

Now let b be a q-boundary of K. Then  for some  

chain c of K. Moreover   where  

Thus where  is given by  for 

. We deduce that 

 

It follows from these observations that there is a well-defined 

isomorphism  

1 2 ...... ,rK K K K   

1 2 ...... rA A A  

1 2, ,......, rA A A

 1 2, ,......, ra a a i ia A 1,2,..... ,i r

     1 2 1 2 1 1 2 2, ,......, , ,......, , ,......,r r r ra a a b b b a b a b a b    

1 2 ....... rK K K K    1 2, ,........ rK K K

       1 2 .......q q q q rH K H K H K H K   

0 q 

   0qH K  0q  q 

1 2 ....... ,rc c c c   

jc jK 1,2,........, .j r

       1 2 ....... .q q q q rC K C K C K C K   

 qz C K   0q z 

1 2 ......... ,rz z z z    jz

jK 1,2,........, .j r

       1 20 ....... ,q q q q rz z z z      

 q rz  1q  jK 1,2,........, .j r

  0q rz  1,2,........, .j r jz jK

       1 2 ....... .q q q q rZ K Z K Z K Z K   

 1qb c   1q  

1 2 ......... ,rc c c c     1 .j q jc C K

1 2 ......... ,rb b b   j q jb B K 1j q jb c 

1,2,........, .j r

       1 2 ....... .q q q q rB K B K B K B K   
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which maps  to  where  

denotes the homology class of a q-cycle  of  for  

Let K be a simplicial complex, and let y and z be vertices of K. We say 

that y and z can be joined by an edge path if there exists a sequence 

 of vertices of K with  and  such that the line 

segment with endpoints  and  is an edge belonging to K for 

 

Lemma 12.11 : The polyhedron  of a simplicial complex K is a 

connected topological space if and only if any two vertices of K can be 

joined by an edge path.  

Proof: It is easy to verify that if any two vertices of K can be joined by 

an edge path then  is path-connected and is thus connected. (Indeed 

any two points of  can be joined by a path made up of a finite number 

of straight line segments.) We must show that if  is connected then 

any two vertices of K can be joined by an edge path. Choose a vertex  

of K. It suffices to verify that every vertex of K can be joined to  by an 

edge path Let  be the collection of all of the simplices of K having the 

property that one (and hence all) of the vertices of that simplex can be 

joined to  by an edge path. If  is a simplex belonging to  then 

every vertex of  can be joined to  by an edge path, and therefore 

every face of  belongs to . Thus  is a subcomplex of K. Clearly 

the collection  of all simplices of K which do not belong to  is also 

a subcomplex of K. Thus  where  and hence 

where  But the polyhedra  and  of 

 and  are closed subsets of . It follows from the connectedness 

of  that either  or  But  Thus  and 

showing that every vertex of K can be joined to  by an edge 

path, as required. Theorem 12.11: Let K be a simplicial complex. 

       1 2: .......q q q r qv H K H K H K H K   

      1 2, ,........., rz z z  1 2 ...... ,rz z z  
jz  

jz jK 1,2,........, .j r

0 1, ,.... mv v v 0v y mv z

1jv  jv

1,2,....., .j m

K

K

K

K

0v

0v

0K

0v  0K

 0v

 0K 0K

1K 0K

0 1,K K K  0 1 ,K K  

0 1 ,K K K  0 1 .K K   0K 1K

0K
1K K

K 0K  1 .K  0 0.v K
1K 

0 ,K K 0v
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Suppose that the polyhedron  of K is connected. Then  

Proof Let  be the vertices of the simplicial complex K. Every 

0-chain of K can be expressed uniquely as a formal sum of the form  

 for some integers  It follows 

that there is a well-defined homomorphism  defined by 

 

Now  whenever y and z are endpoints of 

an edge of K. It follows that  and hence B0(K)  ker 

. 

Let  be vertices of K determining an edge path. Then  

 

Now  is connected, and therefore any pair of vertices of K can be 

joined by an edge path (Lemma 12.7). We deduce that 

 for all vertices y and z of K. Thus if  ker , 

where  then and hence . 

But  It follows that  We conclude that ker 

, and hence ker  

Now the homomorphism  is surjective and its kernel is 

. Therefore, it induces an isomorphism from  to . 

However  (since  by definition). Thus 

 as required. 

On combining Theorem 12.11 with Lemmas 12.9 and 12.10 we obtain 

immediately the following result.  Corollary 12.12 Let K be a simplicial 

complex. Then          (r times), 

where r is the number of connected components of . 

Check your progress: 

K  0 .H K R

1 2, ,...... ru u u
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1. Prove: Let be a non-negative integer, let  be a q-simplex in 

, and let  be a q-simplex in , where and . Then  

and  are homeomorphic. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: Let K be a simplicial complex, and let X be a topological 

space. A function f:  is continuous on the polyhedron  of 

K if and only if the restriction of f to each simplex of K is continuous on 

that simplex. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: Let K be a finite collection of simplices in some Euclidean 

space R
k
 ,and let  be the union of all the simplices in K. Then K is a 

simplicial complex (with polyhedron ) if and only if the following 

two conditions are satisfied: K contains the faces of its simplices, every 

point of  belongs to the interior of a unique simplex of K. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. Prove: Let K be a simplicial complex. Suppose that there exists a 

vertex w of K with the following property:  If vertices  span 

a simplex of K then so do .  Then  and 

 is the zero group for all . 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

12.10 LET US SUM UP 

 

1. Points  in some Euclidean space  are said to be 

q 

mR  nR m q n q 



: f K X K

K

K

K

0 1, ,....., qv v v

0 1, , ,....., qw v v v  0 ,H K R

 qH K 0q 

0 1, ,....., qv v v kR
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geometrically independent (or affine independent) if the only solution of 

the linear system 

 

is the trivial solution  

2. A q-simplex in  is defined to be a set of the form 

 

where  are geometrically independent points of . The 

points  are referred to as the vertices of the simplex. The 

non-negative integer q is referred to as the dimension of the simplex. 

3. Let K be a simplicial complex in R
k
. A subcomplex of K is a 

collection L of simplices belonging to K with the following property: 

If  is a simplex belonging to L then every face of  also belongs to L. 

Note that every subcomplex of a simplicial complex K is itself a 

simplicial complex. 

4. Let K be a finite collection of simplices in some Euclidean space 

R
k
 ,and let  be the union of all the simplices in K. Then K is a 

simplicial complex (with polyhedron ) if and only if the following 

two conditions are satisfied: 

 K contains the faces of its simplices, every point of  belongs to 

the interior of a unique simplex of K. 

5. An oriented q-simplex is an element of the chain group  

of the form , where  are distinct and span a 

simplex of K.  
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Homology groups 

Simplical maps 

12.12 QUESTIONS FOR REVIEW 

 

1. Explain about The chain groups of simplical complex. 

2. Explain about boundary homomorphism. 

3. Explain about simplical maps and induced homomorphism 
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12.14 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 12.3 

2. See section 12.4 

3. See section 12. 4 

4. See section 12.8
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UNIT-13 ALGEBRAIC CURVES I 
 

STRUCTURE 

13.0 Objective 

13.1 Introduction 

13.2 The Kodaira embedding 

13.3 Riemann- Roch theorem 

13.4 General results on Algebraic curves 

13.5 Let us sum up 

13.6 Key words 

13.7 Questions for review 

13.8 Suggestive readings and references 

13.9 Answers to check your progress 

13.0 OBJECTIVE 
 

In this unit we will learn and understand about the Kodaira embedding, 

Riemann- Rock theorem and general results on Algebraic Curves. 

 

13.1 INTRODUCTION 
 

The main purpose of this chapter is to show that compact Riemann 

surfaces can be imbedded into projective space (i.e. they are algebraic 

curves), and to study some of their basic properties. 

13.2 THE KODAIRA EMBEDDING 

 

We start by showing that any compact Riemann surface can be 

embedded as a smooth subvariety in projective  space  this is special :NP
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instance of the so-called Kodiara’s embedding theorem. Together with 

Chow’s Lemma this implies that every compact Riemann surface is 

algebraic. 

We recall that, given two complex manifolds  we say that  

is a sub  manifold of  is  is an injective holomorphic map  

whose differential   is of maximal rank (given 

by the dimension of  )at all  In other terms,  maps iso 

morphically onto a smooth sub  variety of  . 

PROPOSITION 13.1. Any compact Riemann surface can be realized as a 

sub manifold of  for some   

Proof. Pick up a line bundle   on   such that deg   

(choose an effective divisor  with enough points, and let   By 

Serre duality we have 

(13.1)   

For any   since deg  

Consider now the exact sequence 

  

(the morphism  is Cartan’s differential followed by evaluation at  

,while   is the evaluation of sections at  ).Due to (8.1) we get 

  

So that dim   Let   be a basis of  

If   is an open neighbourhood of  is a local 

trivialization of   the quantity  

  

Does not depend on the trivialization ; we have therefore established a 

(holomorphic) map  We must prove that (1)   is injective, 

,X and Y
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and (2) the differential  never vanishes. (1) It is enough to prove 

that, given any two points  there is a section  

such that   for all  this in turn implied by the 

surjectivity of the map 

  

To show this we start from the exact sequence 

  

and note that in coholomology we have 

  

Since 

  

Because deg  

(2) We shall actually show that the adjoint map  is 

surjective. The cotangent space  can be realized as the space of 

equivalence classes of holomorphic functions which have the same value 

at   (e.g; the zero value) and have a first-0rder contact (i.e., they have 

the same differential at ). Let  be a trivializing map for  around  

 we must find a section  such that  

 is surjective at  This is equivalent 

to showing that the map   is surjective, since  

 is the sheaf of holomorphic sections of   vanishing at   

We consider the exact sheaf sequence 

  

By Serre duality, 

  

( )L 
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so that   is surjective. 

Given any complex manifold  one says that a line bundle  is 

very ample if the construction (13.2) defines an imbedding of   into  

 A line bundle   is said to be ample if   is very ample 

for some natural  A sufficient condition for a line bundle to be ample 

may be stated as follows. Definition 13.2. A (1,1) form  on a complex 

manifold is said to be positive if it can be locally written in the form 

  

This map actually depends on the choice of a basis  of   however, 

different choices correspond to an action of the group  

and therefore produce isomorphic subvarieties of  
 with  

 a 

positive definite hermitian matrix.
 

DEFINITION 13.3. If the first Chern class of a line bundle 
  on a 

complex manifold can be represented by a positive 2-form, then  is 

ample. 

While we have seen that any compact Riemann surface carries plenty of 

very ample line bundles, this in general is not the case: there are indeed 

complex manifolds which cannot be imbedded into any projective space. 

A first consequence of the imbedding theorem expressed by Proposition 

8.1 is that any line bundle on a compact Riemann surface comes from a 

divisor, i.e. Div (S)/linear equivalence 
  

PROPOSITION 13.4. If  
  

 is a smooth 1-dimensional
 analytic 

submanifold of projective space (i.e. is the imbedding of a 

compact Riemann surface into ),and   is a line bundle on , there 

is a divisor  such that   

Proof. We must find a global meromorphic section of  
.Let  be the 

restriction to 
 

of the hyperplane bundle  , and let  be the 
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intersection of with a hyperplane in (so  and since  is 

effective, has global holomorphic sections).We shall show that for a 

big enough integer  the line bundle     has a 

global holomorphic section   is a holomorphic section of  , the 

required meromorphic section of  
 

We have an exact sequence 

 

So that after tensoring by   

13.3   

(Here denotes the morphism given by multiplication by s). The 

associated long cohomology exact sequence contains the segment      

 

Where   

  

By Serre duality and the vanishing theorem (if  is big enough, deg  

 Therefore the morphism   in (8.3) 

surpjective, and   

We shall now proceed to identify compact Riemann surfaces with 

(smooth) algebraic curves. Given a homogeneous polynomial 

the zero locus of   

DEFINITION 13.5. A (projective) algebraic variety is a subvariety of 

which is the zero locus of finite collection of homogeneous polynomials. 

We shall say that an algebraic variety is smooth if it is so as an analytic 

subvariety of  

M nP [ ] ,MV H V

MH

m ML mH ( )m

ML H 

;s if t MH

/ .mLis s t

0 ( ) 0s

M M MO H O kv    

,ML mH

0 ( ( 1) ) ( ) 0.s

M M M MO L m H O L mH kv      

s

0 1( , ( )) ( . ( ( 1) ))s

M M M MH M O L mH H M O L m H    NC

deg .VN But

1 0( , ( ( 1) )) ( , ( ( 1) )) 0M M M MH M O L m H H M K L m H      

m

( ( 1) ) 0).M MK O L m H     r

0( , ( )) 0.M MH M O L mH 

1nF onC 

1.nF inC 

nP

nP



Notes 

126 

The dimension of an algebraic variety is its dimension as an analyitic 

subvariety of 
 . A one-dimensional algebraic variety is called an 

algebraic curve. 

The following fundamental result, called Chows lemma, it is not hard to 

prove; we shall anyway omit its proof for the sake of brevity. 

PROPOSITION 13.6. (Chow’s lemma) Any analytic subvariety of 
 is 

algebraic. 

Exercise13.7. Use Chow’s lemma to show that  
  -where  

is the hyperplane line bundle- can be identified with the space of 

homogenous polynomials of degree d on  

Using Chow’s lemma together with the imbedding theorem (Proposition 

13.1) we obtain 

COROLLARY 13.8. Any compact Ricemann surface is smooth algebraic 

curve. 

We switch from the terminology “compact Riemann surface” to 

“algebraic curve”, 

understanding that we shall only consider smooth algebraic curves.
   

We shall usually denote an algebraic curve by the letter C. 

1. Riemann-Roch theorem 

2. A fundamental result in the study of algebraic curves  

We  switch from the terminology “compact Riemann surface” to 

“algebraic curve”, understanding that we shall only consider smooth 

algebraic curves”.
  

 

We shall usually denote an algebraic curve by the letter C. 

13.3 RIEMANN-ROCH THEOREM 
 

A fundamental result in the study of algebraic curves in the Riemann-

Roch theorem. Let C be an algebraic curve, and denote by K its 

nP

nP

0 ( , )d

nH HP H

1.nC

3
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canonical bundle. We denote  and call it the arithmetic 

genus of C (this number will be shortly identified with the topological 

genus of C). 

Proposition 8.1. (Riemann-Roch theorem) For any line bundle   on   

one has  

  

Proof. If   is the trivial line bundle, the result holds obviously 

(notice that   by Serre duality).Exploiting the fact 

that   for some divisor  , it is enough to prove that if the results 

hold for  , then it also holds for   

In the first case we start from the exact sequence 

  

 Strictly speaking an algebraic curve consists of more data than a 

compact Riemann surface S, since the former requires an imbedding of S 

into a projective space, ie. The choice of an ample line bundle. 

 We introduce the following notation if  is a sheaf of  -modules, 

then   

13.4 GENERAL RESULTS ABOUT 

ALGEBRAIC CURVES 
 

Which gives (since    

 

Hence 

  

Analogously for  

Analogously for  . 

By using the Riemann-Roch theorem and Serre duality we may compute 

the degree of K, obtaining  

deg K=2g-2. 

This is called the Riemann-Hurwitz formula. It allows us to identify g 

with the topological genus  of  regarded as a compact oriented 2-

4
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dimensional real manifold S. To this end we may use the Gauss-Bonnet 

theorem, which states that the integral of the Euler class of the real 

tangent bundle to S is the Euler characteristic of    On 

the other hand the complex structure of  makes the real tangent bundle 

into a complex holomorphic line bundle, isomorphic to the holomorphic 

tangent bundle TC, and under this identification the Euler class 

corresponds to the first Chern class of TC. Therefore we get  

 

 

Some general results  

Let us fix some notations and give some definitions. 

The degree of a map. Let be an algebraic curve, and  a smooth 2 

form on , such that   the de Rham cohomology class  may 

be regarded as an element in  and actually provides a basis of 

that space, allowing an identification  is a 

nonconstant holomorphic map between two algebraic curves, then  

 is a nonzero element in   and there is a well defined 

integer   such that  

  

Where  is a smooth 2-form on   such that  we 

have 

 

 

So that the map 
 

takes the value  exactly  times, including 

multiplicities in the sense of divisors; we may say that  covers    

The integer  is called the degree if . 

 This need not be true if the algebraic  is singular. However the 

Riemann-Roch theorem is still true (provided we know that a line bundle 

on a singular curve is!) with   the arithmetic genus.  

., ( ) 2 2gtopS S  

C

5deg 2 2, ,gtopK namely 

.topg g

C 

C 1;C  [ ]

2 ( , ),H C Z

2 '( , ) . :H C Z If f C CZ.

#[ ]f  2 '( , ),H C Z

n

# '[ ] [ ].f n 

' 'C
' 1.t

C
If p C  

1deg ( ) ( [ ])f p c f p   

1( ) ( ) deg 1.oh L h L L g   

f p n

f Cn

6.times n f

C

g



Notes 

129 

Since two holomorphic functions of one variable which agree on a non 

discrete set are identical, and since  is compact, the number of pints in   

is always finite.  

Branch point: Given again a nonconstant holomorphic map   

we may find a coordinate  around any  and a coordinate   

around  such that locally  is described as 

(13.4) 

  

The number   is called the ramification index of  

is said to be a branch point if  

 The branch locus of  is the divisor in   

  

Or its image in   

  

For any   we have 

  

  

From these formulae we may draw the following picture. If   does 

not lie in the branch locus, then exactly  distinct points of  are 

mapped to  which means that   is a covering 

map. 
7
 It  is a branch point of ramification index r-1, at   exactly  

 sheets of the covering join together. 
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There is a relation between the canonical divisors of   and the 

branch locus. Let be a meromorphic 1-form on  which can locally 

be written as 

  

From (13.4) we get 

  

So that 

 

This implies the relation between divisors 

  

On the other hand the divisor is just the canonical divisor of   so 

that 

  

 A (holomorphic) covering map   connected, is a map 

such that each   has a connected neighbourhood such that  

 is the disjoint union of open subsets of  which are 

biholomorphic to  From this formula we may draw an 

interesting result. By taking degree we get 

Deg   

By using the Riemann-Hurwitz formula we obtain 

(13.5)    
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EXERCISES 13.1. Prove that if is nonconstant, then  

 is injective. (Hint: a nonzero element  

 is a global holomorphic 1-form on  which is different 

from zero at all pints in an open dense subset of . Write an explicit 

formula for   

Both equation (8.5) and the previous Exercise imply 

  

The genus formula for plane curves. An algebraic curve  is said to be 

plane if it can be imbedded into . Its image in  is the zero locus of a 

homogenous polynomial; the degree   of this polynomial is by 

definition the degree of . As a divisor,  is linearly equivalent to  

 (indeed, since Pic any divisor on is linearly 

equivalent to for some m; if  is effective,   is the number of 

intersection points between  and a generic hyperplane in , and this 

is given by the degree of the polynomial cutting ).
 

We want to show that for smooth plane curves the following relation 

between genus and degree holds. 

(13.6)   

(For singular plane curves this formula must be modified.) We may 

prove this equation by using the adjunction formula:  is imbedded into

 as a smooth analytic hyper surfcae, so that 

  

Where Recalling that we then have  

 we are actually using here a piece of intersection 

theory. The fact is that any k-dimensional analytic sub variety  of an  

-dimensional complex manifold   determines a homology class  

in the homology group Assume that is compact, and let  
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be an  - dimensional analytic sub variety of   the homology 

cap product   which is dual to the cup 

product in cohomology, associates the integer number  with 

the two sub varieties. One may pick up different representatives  

such that   meet transversally, i.e. 

they meet at a finite number of points; then the number counts 

the intersection points  

In our case the number of intersection points is given by the number of 

solutions to an algebraic system, given by the equation of  (which 

has degree d) and the linear equation of a hyperplane. For a generic 

choice of the hyperplane, the number of solutions is    

To carry on the computation, we notice that, as a divisor on  

so that 

  

and 

  

Whence the formula (8.6). 

Example 13.2. Consider the affine curve in having equation. 

  

By writing this equation in homogeneous coordinates one obtain a curve 

in  which is a double covering of   branched at 6 points. By the 

Riemann-Hurwitza formula we may compute the genus, obtaining g=2. 

Thus the formula (8.6), which would yield g=10,fails in this case. This 

happens because the curve is singular at the point at infinity. 

The residue formula. A meromorphic 1-form on an algebraic curve is 

a meromorphic section of the canomical bundle   Given a point  

 and a local holomorphic coordinate  a meromorphic 1-

form   is locally written around  in the form  where  is a 
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meromorphic function. Let a be coefficient of the   term i nteh 

Laurent expansion of around  and let  a small disc around   by 

the Cauchy formula we have 

 
 

 

So that the number a does not depend on the representation of  . We 

call it the residue of  at  and denote it by   

Given a meromorphic 1form  its polar divisor is   

where the  s are the points where the local representatives of have 

poles of order 1. 

PROPOSITIO N 13.3. Let    be the polar divisor of a 

meromorphic 1-form . Then   

PROOF. Choose a small disc   around each point  . Then 

   

a contradiction. 

Otherwise one can directly identify the sections of  with meromorphic 

functions having (only) a single pole at   since such functions can be 

developed around  in the form 

  

Where   is a holomorphic function,   should be identified with 

the projection of   (Here   is a local complex coordinate such 

that   
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1. Prove: Any compact Riemann surface can be realized as a sub 

manifold of  for some   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: 
If M

 
 is a smooth 1-dimensional

 analytic sub manifold of 

projective space (i.e. is the imbedding of a compact Riemann 

surface into ),and   is a line bundle on , there is a divisor  

such that   

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3. Prove: Riemann-Roch theorem. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

13.5 LET US SUM UP 
 

1. Any compact Riemann surface can be realized as a sub manifold of  

for some   

2. A (1,1) form  on a complex manifold is said to be positive if it can 

be locally written in the form  

This map actually depends on the choice of a basis  of   however, 

different choices correspond to an action of the group  

and therefore produce isomorphic subvarieties of  
 

with  
 a positive definite hermitian matrix.

 

3. 
Any analytic subvariety of 

 is algebraic. 

4. For any line bundle   on   one has   
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5. Let    be the polar divisor of a monomorphic 1-form . 

Then   

13.6 KEY WORDS   
 

1. Polar divisor of a meromorphic 

2. Kodaina embedding 

3. Riemann-Roch Theorem 

4. Riemann-Hurwitz formula 

 

13.7 QUESTIONS FOR REVIEW 
 

1. Prove Riemann-Roch theorem 

2. Explain about general results about algebraic curves. 

3. Prove : Let    be the polar divisor of a meromorphic 1-form 

. Then    
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13.9 ANSWERS TO CHECK YOUR 

PROGRESS       
 

1. See section 13.3 

2. See section 13.3 

3. See section 13.4 
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UNIT-14 ALGEBRIAC CURVES II 
 

STRUCTURE 

14.0 Objective 

14.1 Introduction 

14.2 The Jacobian variety 

14.3 Elliptic curves 

14.4 Nodal curves 

14.5 Transforms of a curve 

14.6 Normalization of a nodal plane curve 

14.7 Let’s Sum up 

14.8 Keyword 

14.9 Questions for review 

14.10 Suggested readings and reference 

14.11 Answer to check your prrogress 

14.0 OBJECTIVE 
 

In this unit we will learn and understand about The Jacobin variety, 

Elliptic curves, Nodal curves, Transforms of a curve, Normalization of a 

nodal plane curve. 

14.1 INTRODUCTION 
 

In this chapter  we further study the geometry of algebraic curves. Topics 

covered include the Jacobian variety of an algebraic curve, some theory 

of elliptic curves, and the desingularization of nodal plane singular 

curves (this will involve the introduction of the notion of blow up of a 

complex surface at a point). 
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14.2 THE JACOBIAN VARIETY 
 

A fundamental tool for the study of an algebraic curve    is its Jacobian 

variety    which we proceed now to define. Let   be an m-dimensional  

complex vector space, and think of it  as an abellian group. A lattice    is 

a subgroup of   of the form (14.1)     

Where    is a basis of  as a real vector space. The quotient space     has a 

natural  structure of complex manifold, and one of abelian group, and the 

two structures are compatible, i.e.,   is a compact abelian complex Lie 

group. We shall   a complex torus. Notice that by varying the lattice.    

one gets another complex torus which may not be isomorphic to the 

previous one (the complex structure may be different), even though the 

two tori are obviously diffeomorphic as real manifolds. 

Example 14.1. if    is an algebraic curve of genus   the group    

classifying the line bundles on  with vanishing first Chern class, has 

structure of complex torus of dimension  since it can be represented as    

is a lattiece in   . This is the Jacobian variety of  . In what follows we 

shall construct this variety in a more explicit way. 

Consider now a smooth algebraic curve   of genus    We shall call abelian 

differentials the global sections of    (i.e, the global holomorphic 1-

forms). If    in abelian differential, we have    this means that    singles 

out a cohomology class    and that 

 Moreover, since locally    we have (14.3)     

If   is a smooth loop in    the number     depends only on the homology 

class of   and the cohomology class of   and expresses the pairing <,> 

between the Poincare dual spaces   . 

Pick up a basis   of the 2g-dimensional free   -module    where the    are 

smooth loops in   and a basis    We associate with these data the    whose 

entries are the numbers 

  This is called the period matrix. Its columns   are linearly independent 

over    if for all Then also     Since    is a basis for    this implies    that is,    
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So the columns of the period matrix generate a lattice,   The quotient 

complex torus,    is the Jacobian variety of    

Define now the intersection matrix    by letting  (this is the    valued 

“cap” or “intersection “ product in homology).Notice that    is an element 

in    since the cup product in cohomoloyg is Pincare’ dual to the cap 

product in homoloyg, for any abelian differentials    we have The 

relations (14.2), (14.3) can then be written in the form  (here denotes 

transposition,   hermitian conjugation). In this form they are called 

Riemann bilinear relations. 

A way to check that the construction of the Jacobi variety does not 

depend on the choices we have made is to restate it invariantly. 

Integration over cycles defines a map. 

This map is injective:    for a given    and all    then  is homologous to the 

constant loop. Then we have the representation    show hat Serre and 

Poincare dualities establish an isomorphism    

The Abel map. After fixing a point   in    and a basis    in    we define a 

map (14.4)      

By letting 

Actually the value of    will depend on the choice of the path from    

however, if    are two paths, the oriented sum    will define a cycle in 

homology, the two values will differe by an element in the lattice, and    

is a well defined point in    

From (14.4) we may get a group homomorphism (14.5)     

By letting 

 All of this depends on the choice of the base point  note however that if 

deg    then the choice   is immaterial. 

PROPOOSITION 14.3. (Abel’s theorem) Two divisors    are linearly 

equivalent if and only if    Corollary 14.4. The Abel map    is injective. 

PROOF. If    by the previous proposition   as divisors, but since    this 

implies    . Abel’s theorem may be stated in a fancier language as 
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follows. Let  be the subset of    formed by the divisors of degree d, and 

let    be the set of line bundles of degree    One has a surjective map    

whose kernel is isomorphic to    Then    filters through a morphism    and 

one has a commutative diagram 

1 Notice that     as sets for all values of    

Moreover, the morphism   is injective   then    that is,   is trivial). 

We can actually say more about the morphism   namely, that it is a 

bijection. It is enough to prove that    is surjective for affixed value of    

(cf. Previous footnote). 

Let   be the d-fold Cartesian product of    with itself. The symmetric 

group  of order    acts on  ; we call the quotient    the d-fold symmetric 

product of      can be identified with the set of effective divisors of  of 

degree    The map   defines a map    

Any local coordinate   on    yields a local coordinate system    And the 

elementary symmetric functions of the coordinates   yield a local 

coordinate system for   Therefore the latter is a d-dimensional complex 

manifold. Moreover, the holomorphic map is   invariant, hence it 

descends to a map   which coincides with    So the latter is holomorphic. 

Exercise14.5. Prove that   (Hint: write explicitly a morphism in 

homogeneous coordinates.) 

The surjectivity of   follows from the following fact, usally called Jacobi 

inversion theorem. 

PROPOSITION 14.6. The map   is surjective. 

PROOF. Let   with all the    distinct, and let    be a local coordinate 

centred in   then   is a local coordinate system around    . If   is near   we 

have (14.6)       

Where   is the component of    Consider now the matrix (14.7?)                                               

We may choose    so that    and then subtracting a suitable multiple of    

from   we may arrange that   We next choose    so that    and arrange that   

and so on. In this way the matrix (14.7) is upper triangular. With these 
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choices of the abelian differentials  and of The points   the Jacobian 

matrix   is upper triangular as well, and since    its diagonal elements    

are nonzero at    s that at the point    corresponding to our choices the 

Jacobian determinant is nonzero. This means that the determinant is not 

everywhere zero, and by Lemma 8.4 one concludes. 

PROPOSITION 14.7. The map    is generically one-to-one. 

PROOF. Let    and choose a divisor    By Abel’s theorem the fibre    is 

formed by all effective divisors linearly equivalent to   hence it is a 

projective space. But since dim     the fibre of    is generically 0-

dimensional,so that generically it is a point. 

This means that   establishes a biholomorphic correspondence between a 

dense subset of    and a dense subset of    such maps are called birational. 

COROLLARY 14.8. Every divisor of degree   on an algebraic curve of 

genus  is linearly equivalent to an effective divisor. 

PROOF. Let    We may write    By mapping    by Abel’s map and taking 

a counter image in    we obtain an effective divisor   linearly equivalent 

to   . Then   is effective and linearly equivalent to   .Corollary 14.9. Every  

elliptic smooth algebraic curve (i.e. every smooth algebraic curve of  

genus 1) is of the form    for some lattice    Proof. We have   and the map    

concides with   By Abel’s theorem,  if and only if there is on   a 

meromorphic function    such that    but on  there are no meromorphic 

functions with a single pole, so that    is also surjective by Lemma 13.4 

(this is a particular case of Jacobi inversion thereorem), hence it is 

bijective. 

Corollary14.10. The canonical bundle of any elliptic curve is trivial. 

Proof. We represent an elliptic curve   as a quotient    The (trivial)tangent 

bundle to    is invariant under the action of  , therefore the tangent bundle 

to   is trivial as well. 

Another consequence is that if   is an elliptic algebraic curve and one 

chooses a point   , the curve has a structure of abelian group, with    

playing the role of the identity element. 
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Jacobian varieties are algebraic. According to our previous discussion, 

any 1-dimensional complex torus is algebraic. This is no longer true for 

higher dimensional tori. However, the Jacobian variety of an algebraic 

curve is always algebraic.  

Let  be a lattice in   any point in the lattice singles out univoquely a cell 

in the lattice, and two opposite sides of the cell determine after 

identification a closed smooth loop in the quotient tours    This provides 

an identification    

Let now   be a skew-symmetric   -bilinear form on   Since   canonically 

(check this isomorphism as an exercise),   may be regarded as a smooth 

complex-valued differential 2-form on T. 

Proposition 14.11. The 2-form  which on the basis   is represented by the 

intersection matrix    is a positive (1,1) form. 

PROOF. If    are the real basis vectors in    generating the lattice, they 

can be regarded as basis in    They also generate   real vector fields on   

(after identifying   with its tangent space at 0 the   yield tangent vectors 

to  at the pint corresponding to 0; by transporting them in all points of  by 

left transport one gets  vector files, which we still denote by    Let   be the 

natural local complex coordinates in  ;the period matrix may be described 

as. 

14.3 ELLIPTIC CURVES 
 

Consider the curve    given by an equation (14.8)    

So we are not only proving that the Jacobian variety of an algebraic 

curve is algebraic ,but, more generally, that any complex torus satisfying 

the Riemann bilinear relations is algebraic. 

We are using the fact that if a smooth complex vector bundle   on a 

complex manifold   has a connection whose curvature has no (0.2) part, 

then the complex structure of   can be “lifted” to  Cf..  

Otherwise, we may use the fact that the image of the map    (the Neron-

Severi group of   of subsection 6.5.1) may be represented as    i.e., as the 
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group of integral 2-classes that are of Hodge type (1,1). The class of  v is 

clearly of this type. Where   are the standard coordinates in    is a 

polynomial of degree 4. By writing the equation (14.8) in homogeneous 

coordinates,   may be completed to an algebraic curve   imbedded in    a 

cubic curve in   Let us assume that   is smooth. By the genus formula we 

see that    is an elliptic curve. 

EXERCISE 14.1. Show that   is a how here vanishing abelian differential 

on  .After proving that all elliptic curves may be written in the form 

(14.8), this provides another proof of the triviality of the canonical 

bundle of an elliptic curve. (Hint: around each branch point,    is a good 

local coordinate…) 

The equation (14.8) moreover exhibits   as a cover of   which is branched 

of order 2 at the points where    and at the point at infinity. One also 

checks that the point at infinity is a smooth point. We want to show that 

every smooth elliptic curve can be realized in this way. 

So let   be a smooth elliptic curve. If we fix a point   and consider the 

exact sequence of sheaves on Proceeding as usual (Serre duality and 

vanishing theorem) one shows that    is nonzero. A nontrivial section   

can be regarded as a global meromorphic function holomorphic in    

having a double pole at    Moreover we fix nowhere vanishing 

holomorphic 1-form   (which exists because K is trival). We have 

We realize   as  these single s out a complex coordinate   on the open 

subset of  corresponding to the fundamental cell of the lattice  . Then we 

may choose   may  be chosen in such a way that On the other hand, the 

meromorphic function  is holomorphic outside  and has a triple pole at   

We may choose constants  such that 

The line bundle     is very ample, i.e., its complete linear system realizes 

the Kodaira imbedding of  into projective space. By Riemann-Roch and 

the vanishing theorem we have   so that is imbedded into  To realize 

explicitly the imbedding we may choose three global sections 

corresponding to the meromorphic functions  We shall see that these are 

related by a polynomial identity, which then expresses the equation 

cutting out    We indeed have, for suitable constants  So, that setting    
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So the meromorphic function in the left-hand side is holomorphic away 

from p, and has at p a simple pole. Such a function must be constant, 

otherwise it would provide an isomorphism of   with the Riemann 

sphere. 

Thus   may be described as a locus in  whose equation in affine 

coordinates is (14.9)  For a suitable constant   By a linear transformation 

on    we may set   and then by a linear transformation of    we may set the 

two roots of the polynomial in the right- hand side of (14.9) to 0 and 1. 

So we express the elliptic curve    in the standard form (Weiersta   

representation) 5 (14.10)   

EXERCISE 14.2 Determine for what values of the parameter   the curve 

(14.10) is smooth. 

We want to claborate on this construction. Having fixed the complex 

coordinate, the function   is basically fixed as well. We call it the 

Weierstra   function. Its derivative is   Notice that    cannot contain terms 

of odd degree in its Laurent expansion, otherwise    would be a 

nonconstant holomorphic function on    so. 

For suitable constants   From this we see that  satisfies the condition One 

usually writes    for    for the constant in the right-hand side. 

In terms of this representation we may introduce a map    is the set of 

isomorphism classes of smooth elliptic curves . Even though the 

Welerstatrft representation only provides the equation of the affine part 

of an elliptic curve, the latter is nevertheless completely characterized. It 

is indeed true that any affine plane curve can be uniquely extended to a 

compact cure by adding points at infinity, as one can check by 

elementary considerations. One shows that this map is bijective; in 

particular   gets a structure of complex manifold. The number    is called 

the j-invariant of the curve   . We may therefore say that the moduli 

space   is isomorphic to    EXERCISE 14.3. Write the j-invariant as a 

function of the parameter    in equation (14.10). Do you think that   is a 

good coordinate on the moduli space   ? 
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The holomorphic map 

Imbeds    into    as the cubic curve cut out by the polynomial (we use the 

same affine coordinates as in the prevous representation). Since    we 

have And the inverse of    is the Abel map, - Having chosen    at the point 

at infinity,    In terms of this construction we may give an elementary 

geometric visualization of the group law in an elliptic curve. Let us 

choose    as the identity element in   . We shall denote by    the element    

regarded as a group element    By Abel’s theorem, Proposition 14.3, we 

have that if and only if   (indeed one may think that    and one has   Let    

be the equation of the equation of the line in    through the points    be the 

further intersectrion of this line with   The function      vanishes (of order 

one) only at the points    and has a pole at   .This pole must be of order 

three, so that the divisor of    is     The fancy coefficient 1728 comes from 

arithmetic geometry, where the theory is tailoted to work also for fields 

of characteristic 2 and 3. 

By uniformization theory one can also realize this this moduli space as a 

quotient   , where    is the upper half complex plane. This is not 

contradictory in that the quotient    is biholomorphic to   (Notice that on 

the contrary,     are not biholomorphic).  One should bear in mind that we 

have identified    with a quotient    If   then   ,so that   are collinear. Vice 

versa,if  are collinear,    is the divisor of the meromorphic function M, so 

that    We have therefore shown that    if and only if   are collinear points 

in  . Example 14.4. Let   be an elliptic curve having a Weierstaraff 

represnetation   is a double cover of   ,branched at the three points. and at 

the point at infinity   . The points   are collinear, so that  The two points   

The  line through    intersects,   at the point at infinity, as one may check 

in homogeneous coordinates. So in this case the elements  are one the 

inverse of the other, and  , and   is the further intersection of  with the 

line going through  if  then  So the branch points   are 2-torsion elements 

in the group,    .  

14.4 NODAL CURVES 
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In this section we show how (plane) curve singularities may be resolved 

by a  procedure called blowup. Blowup.  Blowing up a point in a means 

replacing the point with all possible directions along which one can 

approach it while moving in the variety. We shall at first consider the 

blowup of   at the origin; since this space is 2-dimentional, the set of all 

possible directions is a copy of    Let  be the standard coordinates in   , 

and   homogeneous coordinates in   . The blowup of    at the origin is the 

subvariety       defined by the equation To show that   is a complex 

manifold we cover    with two coordinate charts,    are the standard affine 

charts in  , with coordinates     and  . is a smooth hypersurface in  ,hence 

it is a complex surface. On the other hand if we put homogeneous 

coordinates  then  can be regarded as a open subset of the quadric in   

having equation   so that   is actually algebraic. our treatment of the 

blowup of an algebraic variety is basically taken from . 

NODAL CURVES 

Since  is a subset of  there are two projections (14.11) Which are 

holomorphic. If    is a point (which means that hter is a unique line 

through   so that Is a biholomorphism. On the contrary   is the set of lines 

through the origin in    The fibre of    over a point   is the line   so that   

makes  into the total space of a line bundle over   . This bundle trivializes 

over the cover   , and the transition function   is   so that the line bundle is 

actually the tautological bundle    This construction is local in nature and 

therefore can be applied to any complex surface   (two-dimensional 

complex manifold) at any point   Let   be a chart around   with complex 

coordinates    By repeating the same construction we get complex 

manifold  with projections. And Is a biholomorphism, so that one can 

replace   inside   and get complex manifold   with a projection   which is 

abiholomorphism outside   The manifold   is the blowup of  at   The 

inverse image   is a divisor in , called the exceptional divisor, and is 

isomorphic to   The construction of the blowup  show that   is algebraic if    

is. EXAMPLE 14.1. The blowup  of    at a point is an algebraic surface  

(an example of a Del Pezzo surface): the manifold  ,obtained by blowing 

up   at the origin, is biholomorphic to    minus a projective line    
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14.5 TRANSFORMS OF A CURVE 
 

Let   be a curve in  containing the origin. We denote as before  the 

blowup of   at the origin and make reference to the diagram (14.11). 

notice that the inverse image    contains the exceptional divisor   is 

isomorphic to    

 so, according to a terminology we have introduce in a previous chapter, 

the map    is a bi rational morphism. 

DEFINITION 14.2 The curve    is the total transform of   . The curve 

obtained by taking the topological closure of   is the strict transform of    

We want to check what points are added to    when taking the topological 

closure. To this end we must understand what are the sequence in   which 

converge to 0 that are lifted by   to convergent sequences.  be a sequence 

of points in  converging to 0; then   is the point   with   Assume that for   

big enough one has   (otherwise we would assume   and would make a 

similar argument). Then   converges if and only if   has a limit, say h; in 

that case   converges to the point   This means that the lines   joining 0 to   

approach the limit line   having equation    So a sequence   convergent to 

0 lifts to a convergent sequence in T if and only if the lines   admit a limit 

lines   in that case, the lifted sequence converges to the point of   

representing the line. 

The strict transform   meets the exceptional divisor in as many points as 

are the directions along which one can approach 0 on   . Namely, as are 

the tangents at  at 0. So, if   is smooth at 0, its strict transform meets    at 

one point. Every intersection point must be counted with its multiplicity; 

if at the point 0 the curve   has   coinciding tangents, then the strict 

transform meets the exceptional divisor at a point of multiplicity   . 

DEFINITION 14.3. Let the (affine plane) curve   be given by equation   

We say that  has multiplicity  at 0 if the Taylor expansion of   at 0 starts 

at degree   . 
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This means that the curve has   tangents at the point 0 (but some of them 

might coincide).By choosing suitable coordinates one can apply this 

notion to any point of a plane curve. 

EXAMPLE 14.4. A curve is smooth at 0 if and only if its multiplicity at 

0 is 1. The curves    have multiplicity 2 at 0. The first two have two 

distinct tangents at 0, the third has a double tangent. 

If the curve  has multiplicity   at 0 than it has   tangents at 0, and its strict 

transform meets the exceptional divisor of   points (notice however that 

those points are all distinct only if the  tangents are distincts). 

DEFINITION 14.5. A singular point of a plane curve  is said to be nodal 

if at that point   has multiplicity 2, and the two tangents to the curve at 

that point are distinct. 

EXERCISE 14.6. With reference to equation (14,10), determine for what 

values of   the curve has nodal singularity. 

EXERCISE 14.7. Show that around a nodal singularity a curve is 

isomorphic to an open neighbourhood of the origin of the curve    

EXAMPLE 14.8. (Blowing up a nodal singularity). We consider the 

curve   having equation   This curve has multiplicity 2 at the origin, and 

its two tangents at the origin have equations   has  a nodal singularity at 

the origin. We recall that   is described as the locus 

The projection   is described as (14.12)                                    

In   respectively. By substituting the first of the representations (14.12) 

into the equation of  we obtain the equation of the restriction of the total 

transform to   Where   is the equation of the exceptional divisor, so that 

the equation of the strict transform is    By letting u=0 we obtain the 

points (0,0,1,1) and (0,0,1,-1) as intersection points of the strict transform 

with the exceptional divisor. By substituting the second representation is 

eq.(14.12) we obtain the equation of the total transform in  the strict 

transform now has equation    yielding the same intersection points. The 

total transform is a reducible curve, with two irreducible components 

which meet at two points. 
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EXERCISE 14.9. Repeat the previous calculation for the nodal curve    

In particular show that the total transform is a reducible curve, consisting 

of the exceptional divisor and two more genus zero components, each of 

which meets the exceptional divisor at a point. 

EXERCISE 14.10. (The cusp) Let   be curve with equation   This curve 

has multiplicity 2 at the origin where it has a double tangent. 10 

Proceeding as in the previous example we get the equation    so that    

does not meet   in this chart. In the other chart the equation of    is    so 

that   meets   at the point (0,0,0,1); we have one intersection point 

because the two tangents to   at the origin coincide. 

The strict transform is an irreducible curve, and the total transform is a 

reducible curve with two components meeting at a (double) point. 

Indeed this curve can be regarded as the limit for    of the family of nodal 

curves   which at the origin are tangent to the two lines  

14. 6 NORMALIZATION OF A NODAL 

PLANE CURVE  
 

It is clear from the previous examples that the strict transform of a plane 

nodal curve  (i.e., a plane curve with only nodal singularities) is again a 

nodal curve, with one less singular point. Therefore after a finite number 

of blow-ups we obtain a smooth curve   together with birational 

morphism    is called the normalization of   . 

EXAMPLE 14.11. Let us consider the smooth curve   having equation    

Projection onto the    makes  , into a double cover of    branched at the 

points    The curve    can be completed to a projective curve simply by 

writing its equation in homogeneous coordinates    and considering it as a 

curve    we are thus compactifying    by adding a point at infinity, which 

in this case is not a branch point. The equation of     is This curve has 

genus 1 and is singular at infinity (as one could have already guessed 

since the genus formula for smooth plane curves does not work); indeed, 

after introducing affine coordinates    (in this coordinates the point at 

infinity on the   we have the equation Showing that    is indeed singular 
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at infinity. One can redefine the coordinates    so that   has equation . 

Showing that   is a nodal curve. Then it can be desingularized as in 

Example 14.8.  

A genus formula. We give here, without proof, a formula which can be 

used to compute the genus of the normalization   of a nodal curve. 

Assume that   has     irreducible components    and those singular points. 

Then: For instance, by applying this formula to Example 14.8, we obtain 

that the normalization is a projective line. 

Check Your Progress  

1. Prove: (Abel’s theorem) Two divisors    are linearly    equivalent 

if and only if    

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove: The map   is surjective. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. Explain about elliptic curves. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

14.7 LET US SUM UP 
 

1. Let   be an m-dimensional  complex vector space, and think of it  

as an abellian group. A lattice    is a subgroup of   of the form    

           Where    is a basis of  as a real vector space. 

2. (Abel’s theorem) Two divisors    are linearly equivalent if and 

only if    
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3. The map   is surjective. 

4. Every divisor of degree   on an algebraic curve of genus  is 

linearly equivalent to an effective divisor. 

5. The canonical bundle of any elliptic curve is trivial. 

6. The curve    is the total transform of   . The curve obtained by 

taking the topological closure of   is the strict transform of    

14.8 KEY WORDS 
 

The Jacobian variety 

Abellian group 

Cohomology 

Abel’s theorem 

Elliptic curve 

Nodel curve 

14.9 QUESTIONS FOR REVIEW 
 

1. Explain about Elliptic curves 

2. Explain about nodal curves 

3. Explain about transforms of a curve 
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14.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. See section 14.3 

2. See section 14.3 

3. See section 14.4 

 

 

   


